Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

What Is Mead, and Is It Good for You?

Health + Wellness
What Is Mead, and Is It Good for You?
RoNeDya / iStock / Getty Images

By Ansley Hill, RD, LD

Mead is a fermented beverage traditionally made from honey, water and a yeast or bacterial culture.


Sometimes called "the drink of the gods," mead has been cultivated and consumed across the world for thousands of years.

This article explores mead and its possible benefits and pitfalls.

What Is Mead?

Mead or "honey wine," is an alcoholic beverage made by fermenting honey.

It's one of the oldest alcoholic beverages ever made, as it was consumed as far back as 4,000 years. Interestingly, mead was common across ancient cultures around the world including those in Asia, Europe and Africa.

Though similar to beer, wine or cider, mead occupies a beverage category on its own since its primary fermentable sugar is honey.

All you need to make basic mead is honey, water and a yeast or bacterial culture. However, ingredients such as fruits, herbs, spices, grains, roots and flowers are often included as well.

Mead's alcohol content varies but is typically around 5–20%. Its flavor profile ranges from very sweet to very dry, and it's available in both sparkling and still versions.

Summary

Mead is an alcoholic beverage made by fermenting honey. Its historical significance dates back thousands of years, and it's available in many styles.

Does Science Support Suggested Health Benefits?

In ancient cultures, mead was associated with good health and vitality. In Greek mythology, it was often referred to as "the drink of the gods" and allegedly given to warriors after a fight to enhance healing of their battle injuries.

Today, many still believe that drinking mead benefits your health and that the drink has healing properties. However, there is limited evidence supporting these claims.

Most modern health claims related to drinking mead are centered around the honey from which the drink is made and the probiotic content it's presumed to have as a result of the fermentation process.

Therapeutic Benefits of Honey

Honey has been used for its culinary and therapeutic applications for centuries.

Research indicates that honey has strong antioxidant and antimicrobial properties, both of which have driven its use in ancient and modern medicine to treat a variety of physical ailments (1).

Today it's frequently used as a topical treatment for skin wounds and infections, or consumed orally to soothe a cough or sore throat (1).

Some claim that because mead is made from honey, it possesses the same medicinal properties. Yet, there is no significant evidence to support this notion.

As of now, it remains unclear if fermented honey has the same therapeutic properties as unfermented honey.

Probiotics and Gut Health

Mead is often heeded as a health-tonic due to its potential probiotic content.

Probiotics are living microorganisms that, when consumed in adequate quantities, can have a positive impact on your immunity and gut health (2).

Although the understanding of how probiotics support human health is still at an early stage, some research indicates they could help prevent and treat chronic diseases including heart disease, cancer, allergies and gastrointestinal (GI) disorders (2, 3).

Unfortunately, there is no research specifically evaluating mead as a source of probiotics or how the drink may affect your health.

Additionally, the probiotic content of different types of mead could vary significantly. The fermentation process plus the other ingredients included in the beverage could affect the concentration of beneficial bacteria in the final drink.

What's more, the alcohol content of mead may counteract any possible benefits, as excessive alcohol consumption is associated with negative changes in your gut bacteria (4).

Until more research is available, it cannot be confirmed that drinking mead offers any health benefits by way of its probiotic content.

Summary

Mead is often touted for promoting health because of the honey it's made from and its potential probiotic content. Currently, no research supports these notions.

Potential Downsides of Drinking Too Much

Though frequently praised for its health benefits, drinking mead could have negative health consequences that may be worth considering before you start filling your glass.

Alcohol Content

The alcohol content of mead ranges from about 5% to 20%. For comparison, regular grape wine has a typical alcohol content of about 12–14%.

Excessive alcohol consumption can lead to serious health risks including liver disease, systemic inflammation and impaired digestive and immune system function (4, 5).

The American Dietary Guidelines recommend limiting your alcohol intake to one serving per day for women and two for men. One serving equals about five fluid ounces (148 ml) of mead with 12% alcohol by volume (ABV) (6).

Given the relatively high alcohol content of mead, it could be easy to go overboard, especially if you're drinking it under the assumption that it's good for your health.

Mead should be treated like any other alcoholic beverage. It's good to exercise moderation and limit your intake if you plan to drink it.

Allergic Reactions

For most people, mead is generally well tolerated in moderation.

Mead is typically gluten-free, depending on what is added during the fermentation process. Thus, if you have a gluten allergy, double check the mead you plan to drink to ensure no gluten-containing ingredients were included in the brew.

Mead may potentially cause serious allergic reactions in some people, especially those with honey and alcohol allergies or intolerances.

Though rare, there have been reports of honey leading to anaphylactic reactions. If you've ever had a serious allergic reaction to honey or bee pollen, it may be a good idea to avoid drinking mead (7).

Additionally, if you've ever been diagnosed with an alcohol intolerance or allergy, you should not drink mead as its alcohol content could trigger symptoms.

Calorie Content

Mead is a high-calorie beverage, thus, overconsumption could negatively impact your health.

Drinking too much of any alcoholic beverage, including mead, can increase your blood triglycerides, blood pressure and your risk of obesity and diabetes (8).

While there isn't much information available on the precise nutritional content of mead, pure alcohol alone provides 7 calories per gram.

One serving of any alcoholic beverage contains about 14 grams of alcohol, equaling at least 100 calories. This doesn't take into account any of the calories from, for example, the sugar in the mead (6).

Summary

Excessive consumption of alcohol and calories from mead could lead to serious health problems. For sensitive individuals, there's also a risk of allergic reactions from the honey or alcohol in the drink.

The Bottom Line

Mead is an alcoholic beverage made from fermented honey.

Due to its honey and potential probiotic content, it's touted as offering various health benefits, but scientific evidence to back up these claims is lacking.

Additionally, its alcohol content may negate benefits and, in fact, cause health issues.

As with any other alcoholic beverage, practice moderation and enjoy it responsibly.

Reposted with permission from our media associate Healthline.

Related Articles Around the Web

EcoWatch Daily Newsletter

A bald eagle flies over Lake Michigan. KURJANPHOTO / iStock / Getty Images Plus

A Michigan bald eagle proved that nature can still triumph over machines when it attacked and drowned a nearly $1,000 government drone.

Read More Show Less
The peloton ride passes through fire-ravaged Fox Creek Road in Adelaide Hills, South Australia, during the Tour Down Under cycling event on January 23, 2020. Brenton Edwards / AFP / Getty Images

A professional cycling race in Australia is under attack for its connections to a major oil and gas producer, the Guardian reports.

Read More Show Less
UQ study lead Francisca Ribeiro inspects oysters. The study of five different seafoods revealed plastic in every sample. University of Queensland

A new study of five different kinds of seafood revealed traces of plastic in every sample tested.

Read More Show Less
Cottongrass blows in the wind at the edge of Etivlik Lake, Alaska. Western Arctic National Parklands / Wikimedia Commons / CC by 2.0

By Tara Lohan

Warming temperatures on land and in the water are already forcing many species to seek out more hospitable environments. Atlantic mackerel are swimming farther north; mountain-dwelling pikas are moving upslope; some migratory birds are altering the timing of their flights.

Numerous studies have tracked these shifting ranges, looked at the importance of wildlife corridors to protect these migrations, and identified climate refugia where some species may find a safer climatic haven.

"There's a huge amount of scientific literature about where species will have to move as the climate warms," says U.C. Berkeley biogeographer Matthew Kling. "But there hasn't been much work in terms of actually thinking about how they're going to get there — at least not when it comes to wind-dispersed plants."

Kling and David Ackerly, professor and dean of the College of Natural Resources at U.C. Berkeley, have taken a stab at filling this knowledge gap. Their recent study, published in Nature Climate Change, looks at the vulnerability of wind-dispersed species to climate change.

It's an important field of research, because while a fish can more easily swim toward colder waters, a tree may find its wind-blown seeds landing in places and conditions where they're not adapted to grow.

Kling is careful to point out that the researchers weren't asking how climate change was going to change wind; other research suggests there likely won't be big shifts in global wind patterns.

Instead the study involved exploring those wind patterns — including direction, speed and variability — across the globe. The wind data was then integrated with data on climate variation to build models trying to predict vulnerability patterns showing where wind may either help or hinder biodiversity from responding to climate change.

One of the study's findings was that wind-dispersed or wind-pollinated trees in the tropics and on the windward sides of mountain ranges are more likely to be vulnerable, since the wind isn't likely to move those dispersers in the right direction for a climate-friendly environment.

The researchers also looked specifically at lodgepole pines, a species that's both wind-dispersed and wind-pollinated.

They found that populations of lodgepole pines that already grow along the warmer and drier edges of the species' current range could very well be under threat due to rising temperatures and related climate alterations.

"As temperature increases, we need to think about how the genes that are evolved to tolerate drought and heat are going to get to the portions of the species' range that are going to be getting drier and hotter," says Kling. "So that's what we were able to take a stab at predicting and estimating with these wind models — which populations are mostly likely to receive those beneficial genes in the future."

That's important, he says, because wind-dispersed species like pines, willows and poplars are often keystone species whole ecosystems depend upon — especially in temperate and boreal forests.

And there are even more plants that rely on pollen dispersal by wind.

"That's going to be important for moving genes from the warmer parts of a species' range to the cooler parts of the species' range," he says. "This is not just about species' ranges shifting, but also genetic changes within species."

Kling says this line of research is just beginning, and much more needs to be done to test these models in the field. But there could be important conservation-related benefits to that work.

"All these species and genes need to migrate long distances and we can be thinking more about habitat connectivity and the vulnerability of these systems," he says.

The more we learn, the more we may be able to do to help species adapt.

"The idea is that there will be some landscapes where the wind is likely to help these systems naturally adapt to climate change without much intervention, and other places where land managers might really need to intervene," he says. "That could involve using assisted migration or assisted gene flow to actually get in there, moving seeds or planting trees to help them keep up with rapid climate change."


Tara Lohan is deputy editor of The Revelator and has worked for more than a decade as a digital editor and environmental journalist focused on the intersections of energy, water and climate. Her work has been published by The Nation, American Prospect, High Country News, Grist, Pacific Standard and others. She is the editor of two books on the global water crisis. http://twitter.com/TaraLohan

Reposted with permission from The Revelator.

An illustration depicts the extinct woolly rhino. Heinrich Harder / Wikimedia Commons

The last Ice Age eliminated some giant mammals, like the woolly rhino. Conventional thinking initially attributed their extinction to hunting. While overhunting may have contributed, a new study pinpointed a different reason for the woolly rhinos' extinction: climate change.

The last of the woolly rhinos went extinct in Siberia nearly 14,000 years ago, just when the Earth's climate began changing from its frozen conditions to something warmer, wetter and less favorable to the large land mammal. DNA tests conducted by scientists on 14 well-preserved rhinos point to rapid warming as the culprit, CNN reported.

"Humans are well known to alter their environment and so the assumption is that if it was a large animal it would have been useful to people as food and that must have caused its demise," says Edana Lord, a graduate student at the Center for Paleogenetics in Stockholm, Sweden, and co-first author of the paper, Smithsonian Magazine reported. "But our findings highlight the role of rapid climate change in the woolly rhino's extinction."

The study, published in Current Biology, notes that the rhino population stayed fairly consistent for tens of thousands of years until 18,500 years ago. That means that people and rhinos lived together in Northern Siberia for roughly 13,000 years before rhinos went extinct, Science News reported.

The findings are an ominous harbinger for large species during the current climate crisis. As EcoWatch reported, nearly 1,000 species are expected to go extinct within the next 100 years due to their inability to adapt to a rapidly changing climate. Tigers, eagles and rhinos are especially vulnerable.

The difference between now and the phenomenon 14,000 years ago is that human activity is directly responsible for the current climate crisis.

To figure out the cause of the woolly rhinos' extinction, scientists examined DNA from different rhinos across Siberia. The tissue, bone and hair samples allowed them to deduce the population size and diversity for tens of thousands of years prior to extinction, CNN reported.

Researchers spent years exploring the Siberian permafrost to find enough samples. Then they had to look for pristine genetic material, Smithsonian Magazine reported.

It turns out the wooly rhinos actually thrived as they lived alongside humans.

"It was initially thought that humans appeared in northeastern Siberia fourteen or fifteen thousand years ago, around when the woolly rhinoceros went extinct. But recently, there have been several discoveries of much older human occupation sites, the most famous of which is around thirty thousand years old," senior author Love Dalén, a professor of evolutionary genetics at the Center for Paleogenetics, said in a press release.

"This paper shows that woolly rhino coexisted with people for millennia without any significant impact on their population," Grant Zazula, a paleontologist for Canada's Yukon territory and Simon Fraser University who was not involved in the research, told Smithsonian Magazine. "Then all of a sudden the climate changed and they went extinct."

A large patch of leaked oil and the vessel MV Wakashio near Blue Bay Marine Park off the coast of southeast Mauritius on Aug. 6, 2020. AFP via Getty Images

The environmental disaster that Mauritius is facing is starting to appear as its pristine waters turn black, its fish wash up dead, and its sea birds are unable to take flight, as they are limp under the weight of the fuel covering them. For all the damage to the centuries-old coral that surrounds the tiny island nation in the Indian Ocean, scientists are realizing that the damage could have been much worse and there are broad lessons for the shipping industry, according to Al Jazeera.

Read More Show Less

Trending

A quality engineer examines new solar panels in a factory. alvarez / Getty Images

Transitioning to renewable energy can help reduce global warming, and Jennie Stephens of Northeastern University says it can also drive social change.

For example, she says that locally owned businesses can lead the local clean energy economy and create new jobs in underserved communities.

"We really need to think about … connecting climate and energy with other issues that people wake up every day really worried about," she says, "whether it be jobs, housing, transportation, health and well-being."

To maximize that potential, she says the energy sector must have more women and people of color in positions of influence. Research shows that leadership in the solar industry, for example, is currently dominated by white men.

"I think that a more inclusive, diverse leadership is essential to be able to effectively make these connections," Stephens says. "Diversity is not just about who people are and their identity, but the ideas and the priorities and the approaches and the lens that they bring to the world."

So she says by elevating diverse voices, organizations can better connect the climate benefits of clean energy with social and economic transformation.

Reposted with permission from Yale Climate Connections.