Quantcast
Energy
Harvesting sugarcane in Brazil. Jonathan Wilkins / CC BY-SA

Jet Fuel From Sugarcane? It’s No Flight of Fancy

By Deepak Kumar, Stephen P. Long and Vijay Singh

The aviation industry produces two percent of global human-induced carbon dioxide emissions. This share may seem relatively small—for perspective, electricity generation and home heating account for more than 40 percent—but aviation is one of the world's fastest-growing greenhouse gas sources. Demand for air travel is projected to double in the next 20 years.

Airlines are under pressure to reduce their carbon emissions, and are highly vulnerable to global oil price fluctuations. These challenges have spurred strong interest in biomass-derived jet fuels. Bio-jet fuel can be produced from various plant materials, including oil crops, sugar crops, starchy plants and lignocellulosic biomass, through various chemical and biological routes. However, the technologies to convert oil to jet fuel are at a more advanced stage of development and yield higher energy efficiency than other sources.


We are engineering sugarcane, the most productive plant in the world, to produce oil that can be turned into bio-jet fuel. In a recent study, we found that use of this engineered sugarcane could yield more than 2,500 liters of bio-jet fuel per acre of land. In simple terms, this means that a Boeing 747 could fly for 10 hours on bio-jet fuel produced on just 54 acres of land. Compared to two competing plant sources, soybeans and jatropha, lipidcane would produce about 15 and 13 times as much jet fuel per unit of land, respectively.

Creating dual-purpose sugarcane

Bio-jet fuels derived from oil-rich feedstocks, such as camelina and algae, have been successfully tested in proof of concept flights. The American Society for Testing and Materials has approved a 50:50 blend of petroleum-based jet fuel and hydroprocessed renewable jet fuel for commercial and military flights.

However, even after significant research and commercialization efforts, current production volumes of bio-jet fuel are very small. Making these products on a larger scale will require further technology improvements and abundant low-cost feedstocks (crops used to make the fuel).

Sugarcane is a well-known biofuel source: Brazil has been fermenting sugarcane juice to make alcohol-based fuel for decades. Ethanol from sugarcane yields 25 percent more energy than the amount used during the production process, and reduces greenhouse gas emissions by 12 percent compared to fossil fuels.

We wondered whether we could increase the plant's natural oil production and use the oil to produce biodiesel, which provides even greater environmental benefits. Biodiesel yields 93 percent more energy than is required to make it and reduces emissions by 41 percent compared to fossil fuels. Ethanol and biodiesel can both be used in bio-jet fuel, but the technologies to convert plant-derived oil to jet fuel are at an advanced stage of development, yield high energy efficiency and are ready for large-scale deployment.

When we first proposed engineering sugarcane to produce more oil, some of our colleagues thought we were crazy. Sugarcane plants contain just 0.05 percent oil, which is far too little to convert to biodiesel. Many plant scientists theorized that increasing the amount of oil to one percent would be toxic to the plant, but our computer models predicted that we could increase oil production to 20 percent.

With support from the Department of Energy's Advanced Research Projects Agency-Energy, we launched a research project called Plants Engineered to Replace Oil in Sugarcane and Sorghum, or PETROSS, in 2012. Since then, through genetic engineering we've increased production of oil and fatty acids to achieve 12 percent oil in the leaves of sugarcane.

A bottle of oil produced from PETROSS lipidcaneClaire Benjamin / University of Illinois, CC BY-ND

Now we are working to achieve 20 percent oil—the theoretical limit, according to our computer models—and targeting this oil accumulation to the stem of the plant, where it is more accessible than in the leaves. Our preliminary research has shown that even as the engineered plants produce more oil, they continue to produce sugar. We call these engineered plants lipidcane.

Multiple products from lipidcane

Lipidcane offers many advantages for farmers and the environment. We calculate that growing lipidcane containing 20 percent oil would be five times more profitable per acre than soybeans, the main feedstock currently used to make biodiesel in the U.S., and twice as profitable per acre as corn.

To be sustainable, bio-jet fuel must also be economical to process and have high production yields that minimize use of arable land. We estimate that compared to soybeans, lipidcane containing five percent oil could produce four times more jet fuel per acre of land. Lipidcane with 20 percent oil could produce more than 15 times more jet fuel per acre.

And lipidcane offers other energy benefits. The plant parts left over after juice extraction, known as bagasse, can be burned to produce steam and electricity. According to our analysis, this would generate more than enough electricity to power the biorefinery, so surplus power could be sold back to the grid, displacing electricity produced from fossil fuels—a practice already used in some plants in Brazil to produce ethanol from sugarcane.

A potential U.S. bioenergy crop

Sugarcane thrives on marginal land that is not suited to many food crops. Currently it is grown mainly in Brazil, India and China. We are also engineering lipidcane to be more cold-tolerant so that it can be raised more widely, particularly in the southeastern U.S. on underutilized land.

A map of the growing region of cold-tolerant lipidcanePETROSS

If we devoted 23 million acres in the southeastern U.S. to lipidcane with 20 percent oil, we estimate that this crop could produce 65 percent of the U.S. jet fuel supply. Presently, in current dollars, that fuel would cost airlines $5.31 per gallon, which is less than bio-jet fuel produced from algae or other oil crops such as soybeans, canola or palm oil.

Lipidcane could also be grown in Brazil and other tropical areas. As we recently reported in Nature Climate Change, significantly expanding sugarcane or lipidcane production in Brazil could reduce current global carbon dioxide emissions by up to 5.6 percent. This could be accomplished without impinging on areas that the Brazilian government has designated as environmentally sensitive, such as rainforest.

In pursuit of 'energycane'

Our lipidcane research also includes genetically engineering the plant to make it photosynthesize more efficiently, which translates into more growth. In a 2016 article in Science, one of us (Stephen Long) and colleagues at other institutions demonstrated that improving the efficiency of photosynthesis in lipidcane increased its growth by 20 percent. Preliminary research and side-by-side field trials suggest that we have improved the photosynthetic efficiency of sugarcane by 20 percent, and by nearly 70 percent in cool conditions.

Normal sugarcane (left) growing beside engineered PETROSS sugarcane, which is visibly taller and bushier, in field trials at the University of FloridaFredy Altpeter / University of Florida, CC BY-ND

Now our team is beginning work to engineer a higher-yielding variety of sugarcane that we call "energycane" to achieve more oil production per acre. We have more ground to cover before it can be commercialized, but developing a viable plant with enough oil to economically produce biodiesel and bio-jet fuel is a major first step.

Reposted with permission from our media associate The Conversation.

Show Comments ()

EcoWatch Daily Newsletter

Sponsored
Climate
350 .org / Flickr / CC BY-NC-SA 2.0

Taking Your First Steps Into Local Climate Action

Yes, yes—it can feel daunting. The climate crisis is more urgent than it's ever been. Some days we feel like we're making good progress, when we hear of countries powered by 100 percent renewable energy or a big commitment to take on fossil fuel corporations from a city like New York. But other days, it's a heavy burden knowing there's so much more that needs to be done to unseat the fossil fuel industry and move to a just, Fossil Free, renewably-powered world.

Keep reading... Show less
Food

'Eating Animals' Drives Home Where Our Food Really Comes From

It started with a call from actress and animal rights activist Natalie Portman to author Jonathan Safran Foer. The latter had recently taken a break from novel-writing to publish 2009's New York Times best-selling treatise Eating Animals—an in-depth discussion of what it means to eat animals in an industrialized world, with all attendant environmental and ethical concerns. The two planned a meeting in Foer's Brooklyn backyard, and also invited documentary director Christopher Dillon Quinn (God Grew Tired of Us) over. The idea was to figure out how to turn Foer's sprawling, memoiristic book into a documentary that would ignite mainstream conversations around our food systems.

Keep reading... Show less
Food

A Ghanaian Chef Feeding His Country and Combating Food Waste

Ghanaian chef Elijah Amoo Addo is on a mission to feed his nation on the excesses the food industry creates. Since 2012, he has been collecting unwanted stock or food nearing its use-by date from suppliers, farmers and restaurants in Ghana to redistribute to orphanages, hospitals, schools and vulnerable communities through his not-for-profit organization Food for All Africa. They provide meals through a Share Your Breakfast program in addition to donating stock to be used later. The organization supports and encourages communities to farm and works with stakeholders within Ghana's food industry on ways to combat waste.

Keep reading... Show less
Animals
Tucuxi Amazon river dolphins (Sotalia fluviatilis). Projeto Boto

Hunting, Fishing Cause Dramatic Decline in Amazon River Dolphins

By Claire Asher

Populations of two species of river dolphin in the Amazon are halving every decade, according to the results of a twenty-two year survey.

The Amazon rainforest is home to the Amazon river dolphin, or Boto (Inia geoffrensis) and the Tucuxi (Sotalia fluviatilis). But the results of a long-term study published in PLoS ONE show that both of these once abundant aquatic mammals are now in rapid decline in the Brazilian Amazon, likely due to hunting and fishing.

Keep reading... Show less
Sponsored
Energy

'Historic First': Nebraska Farmers Return Land to Ponca Tribe in Effort to Block Keystone XL

By Jessica Corbett

In a move that could challenge the proposed path of TransCanada's Keystone XL pipeline—and acknowledges the U.S. government's long history of abusing Native Americans and forcing them off their lands—a Nebraska farm couple has returned a portion of ancestral land to the Ponca Tribe.

Keep reading... Show less
Business

Sustainable Fashion Innovator Makes Fiber From Pineapple Leaves

In 1960, 97 percent of the fibers used in clothing came from natural materials. Today that number has fallen to 35 percent. But sustainable fashion veteran Isaac Nichelson wants to reverse that trend.

His company, Circular Systems S.P.C. (Social Purpose Corp.), has developed an innovative technology for turning food waste into thread, according to a Fast Company profile published Friday.

Keep reading... Show less
Sponsored
Politics
EPA Administrator Scott Pruitt at the U.S. House Committee on Energy and Commerce Subcommittee on Environment on April 26. EPA / YouTube

Chair of Senate Environment Panel to Call Scott Pruitt to Testify on Scandals

The Republican chairman of the Senate committee with oversight of the U.S. Environmental Protection Agency (EPA) plans to call the agency's embattled chief Scott Pruitt to testify, specifically in response to multiple scandals and investigations surrounding the administrator.

Through a spokesperson, Sen. John Barrasso, R-Wyo., informed Reuters of his decision to compel Pruitt to come before the Environment and Public Works Committee to answer questions about his alleged abuse of his office.

Keep reading... Show less
Politics
Pexels

Senate’s Farm Bill Moves Forward—But What Is It, Anyway?

By Shannan Lenke Stoll

The Senate Agriculture Committee just passed its version of a farm bill in a 20-1 vote Thursday. It's one more step in what has been a delayed journey to pass a 2018–2022 bill before the current one expires in September.

Keep reading... Show less
Sponsored

mail-copy

The best of EcoWatch, right in your inbox. Sign up for our email newsletter!