Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Micro-Naps for Plants: Flicking the Lights on and off Can Save Energy Without Hurting Indoor Agriculture Harvests

Insights + Opinion
Modern agricultural greenhouses in the Netherlands use LED lights to support plant growth. GAPS / iStock / Getty Images Plus

By Kevin M. Folta

A nighttime arrival at Amsterdam's Schiphol Airport flies you over the bright pink glow of vegetable production greenhouses. Growing crops under artificial light is gaining momentum, particularly in regions where produce prices can be high during seasons when sunlight is sparse.


The Netherlands is just one country that has rapidly adopted controlled-environment agriculture, where high-value specialty crops like herbs, fancy lettuces and tomatoes are produced in year-round illuminated greenhouses. Advocates suggest these completely enclosed buildings – or plant factories – could be a way to repurpose urban space, decrease food miles and provide local produce to city dwellers.

One of the central problems of this process is the high monetary cost of providing artificial light, usually via a combination of red and blue light-emitting diodes. Energy costs sometimes exceed 25% of the operational outlay. How can growers, particularly in the developing world, compete when the sun is free? Higher energy use also translates to more carbon emissions, rather than the decreased carbon footprint sustainably farmed plants can provide.

I've studied how light affects plant growth and development for over 30 years. I recently found myself wondering: Rather than growing plants under a repeating cycle of one day of light and one night of darkness, what if the same daylight was split into pulses lasting only hours, minutes or seconds?

Short Bursts of Light and Dark

So my colleagues and I designed an experiment. We'd apply the normal amount of light in total, just break it up over different chunks of time.

Of course plants depend on light for photosynthesis, the process that in nature uses the sun's energy to merge carbon dioxide and water into sugars that fuel plant metabolism. Light also directs growth and development through its signals about day and night, and monkeying with that information stream might have disastrous results.

That's because breaking something good into smaller bits sometimes creates new problems. Imagine how happy you'd be to receive a $100 bill – but not as thrilled with the equivalent 10,000 pennies. We suspected a plant's internal clock wouldn't accept the same luminous currency when broken into smaller denominations.

And that's exactly what we demonstrated in our experiments. Kale, turnip or beet seedlings exposed to cycles of 12 hours of light, 12 hours dark for four days grew normally, accumulating pigments and growing larger. When we decreased the frequency of light-dark cycles to 6 hours, 3 hours, 1 hour or 30 minutes, the plants revolted. We delivered the same amount of light, just applied in different-sized chunks, and the seedlings did not appreciate the treatment.

The same amount of light applied in shorter intervals over the day caused plants to grow more like they were in darkness. We suspect the light pulses conflicted with a plant's internal clock, and the seedlings had no idea what time of day it was. Stems stretched taller in an attempt to find more light, and processes like pigment production were put on hold.

But when we applied light in much, much shorter bursts, something remarkable happened. Plants grown under five-second on/off cycles appeared to be almost identical to those grown under the normal light/dark period. It's almost like the internal clock can't get started properly when sunrise comes every five seconds, so the plants don't seem to mind a day that is a few seconds long.

Just as we prepared to publish, undergraduate collaborator Paul Kusuma found that our discovery was not so novel. We soon realized we'd actually rediscovered something already known for 88 years. Scientists at the U.S. Department of Agriculture saw this same phenomenon in 1931 when they grew plants under light pulses of various durations. Their work in mature plants matches what we observed in seedlings with remarkable similarity.

A 1931 study by Garner and Allard tracked the growth of Yellow Cosmos flowers under light pulses of various durations.

J. Agri. Res. 42: National Agricultural Library, Agricultural Research Service, U.S. Department of Agriculture., CC BY-ND

Not only was all of this a retread of an old idea, but pulses of light do not save any energy. Five seconds on and off uses the same amount of energy as the lights being on for 12 hours; the lights are still on for half the day.

But what would happen if we extended the dark period? Five seconds on. Six seconds off. Or 10 seconds off. Or 20 seconds off. Maybe 80 seconds off? They didn't try that in 1931.

Building in Extra Downtime

It turns out that the plants don't mind a little downtime. After applying light for five seconds to activate photosynthesis and biological processes like pigment accumulation, we turned the light off for 10, or sometimes 20 seconds. Under these extended dark periods, the seedlings grew just as well as they had when the light and dark periods were equal. If this could be done on the scale of an indoor farm, it might translate to a significant energy savings, at least 30% and maybe more.

Recent yet-to-be published work in our lab has shown that the same concept works in leaf lettuces; they also don't mind an extended dark time between pulses. In some cases, the lettuces are green instead of purple and have larger leaves. That means a grower can produce a diversity of products, and with higher marketable product weight, by turning the lights off.

One variety of lettuce grew purple when given a 10-second dark period. They look similar to those grown with a five-second dark period, yet use 33% less energy. Extending the dark period to 20 seconds yielded green plants with more biomass.


J. Feng, K. Folta

Learning that plants can be grown under bursts of light rather than continuous illumination provides a way to potentially trim the expensive energy budget of indoor agriculture. More fresh vegetables could be grown with less energy, making the process more sustainable. My colleagues and I think this innovation could ultimately help drive new business and feed more people – and do so with less environmental impact.

Kevin M. Folta is a professor of horticultural sciences and plant molecular and cellular biology at the University of Florida.
Disclosure statement: Kevin M. Folta received funding from the United States Department of Agriculture National Institute of Food and Agriculture and Vindara Inc to work on questions in agricultural lighting. He is affiliated with Eggsotics Eggs and Produce where his family grows some direct-market produce under hydroponic and/or artificial light conditions. He is reimbursed for travel related to talks in research and science communication. A full list of prior research funding may be seen at www.kevinfolta.com/transparency.

Reposted with permission from our media associate The Conversation.

EcoWatch Daily Newsletter

Food Tank

By Danielle Nierenberg and Alonso Diaz

With record high unemployment, a reeling global economy, and concerns of food shortages, the world as we know it is changing. But even as these shifts expose inequities in the health and food systems, many experts hope that the current moment offers an opportunity to build a new and more sustainable food system.

Read More Show Less
Pexels

By Brian J. Love and Julie Rieland

The COVID-19 pandemic has disrupted the U.S. recycling industry. Waste sources, quantities and destinations are all in flux, and shutdowns have devastated an industry that was already struggling.

Read More Show Less
Pixabay

By Kris Gunnars, BSc

Unhealthy foods play a primary role in many people gaining weight and developing chronic health conditions, more now than ever before.

Read More Show Less
A man pushes his mother in a wheelchair down Ocean Drive in South Beach, Miami on May 19, 2020, amid the novel coronavirus pandemic. CHANDAN KHANNA / AFP via Getty Images

The U.S. reported more than 55,000 new coronavirus cases on Thursday, in a sign that the outbreak is not letting up as the Fourth of July weekend kicks off.

Read More Show Less
To better understand how people influence the overall health of dolphins, Oklahoma State University's Unmanned Systems Research Institute is developing a drone to collect samples from the spray that comes from their blowholes. Ken Y. / CC by 2.0

By Jason Bruck

Human actions have taken a steep toll on whales and dolphins. Some studies estimate that small whale abundance, which includes dolphins, has fallen 87% since 1980 and thousands of whales die from rope entanglement annually. But humans also cause less obvious harm. Researchers have found changes in the stress levels, reproductive health and respiratory health of these animals, but this valuable data is extremely hard to collect.

Read More Show Less

Sunscreen pollution is accelerating the demise of coral reefs globally by causing permanent DNA damage to coral. gonzalo martinez / iStock / Getty Images Plus

On July 29, Florida Governor Ron DeSantis signed into law a controversial bill prohibiting local governments from banning certain types of sunscreens.

Read More Show Less

Trending

Oat milk is popping up at coffee shops and grocery stores alike, quickly becoming one of the trendiest plant-based milks. jacqueline / CC by 2.0

By Kelli McGrane

Oat milk is popping up at coffee shops and grocery stores alike, quickly becoming one of the trendiest plant-based milks.

Read More Show Less