
By Michael Goggin
For the second time in two weeks, wind power once again kept consumers’ energy costs down as extreme cold drove energy prices to record highs across much of the eastern U.S.
Electricity and natural gas prices skyrocketed to 10 to 50 times normal across parts of the Mid-Atlantic and Great Lakes states as extreme cold drove demand for electric and gas heating to near-record levels late last week. Fortunately, regional wind energy output was strong throughout these periods of peak demand, producing around 3,000 megawatts (MW) on the evening of Jan. 22 when supply was particularly tight, and roughly 3,000 to 4,000 MW for nearly all of Jan. 23 as electricity prices remained very high.
The savings that wind energy provided for consumers last week likely tally in the millions if not tens of millions of dollars, as wind energy reduced consumers’ energy costs in several major ways. Wind energy always provides these savings for consumers, which is why more than a dozen state government, grid operator, and other studies have confirmed that wind energy reduces consumers’ electricity prices.
However, these savings are further magnified when energy prices are high:
- Most directly, wind energy provided highly valuable electricity when PJM, the regional grid operator, needed it most. During the period of peak demand on Thursday evening, wind energy was providing PJM with 3,500 MW while electricity prices averaged more than $500 per MW hour (MWh), providing direct savings of $1.5 million to $2 million per hour.
- A potentially far larger impact is that wind energy helped to drive down the market price for all MWh of electricity that are being sold in the market, not just the wind MWh. Grid operators always use zero-fuel cost wind energy to displace output from the most expensive and least efficient power plants that are currently operating. This drives the electricity price for all market participants down, as the market price is now being set by a more efficient and less expensive power plant. Because the supply curve of generation options is typically extremely steep during periods of peak demand (see the illustration above), even a modest amount of additional supply greatly reduces the market electricity prices. Moreover, because this market price applies to all MWh sold in the market, not just the wind MWh, the savings are multiplied again.
- Through a similar mechanism, additional wind energy supply also reduces prices in natural gas markets, providing savings for all users of natural gas. During these times of peak demand, wind energy was primarily displacing gas use at natural-gas fired power plants. Many areas in the eastern U.S. were at or near record natural gas prices due to weather-driven demand for natural gas for building heating as well as electricity generation. Because the natural gas price curve is also quite steep during times of peak demand, and because the market price applies to all transactions in the market, wind energy likely produced large savings for all natural gas users by driving down the price of natural gas. So even if you primarily use natural gas to heat your home (in addition to electricity to run your furnace fans) you can thank wind energy for helping to keep your heating bill low.
One compelling illustration of these benefits came in a glowing press release from the Nebraska Public Power District (NPPD), describing how a large amount of wind energy output kept energy prices low for their customers during the cold snap two weeks ago. The utility explained that “Nebraskans benefit from NPPD’s diverse portfolio of generating resources. Using a combination of fuels means we deliver electricity using the lowest cost resources while maintaining high reliability for our customers.” The utility also noted that “NPPD did not operate its natural gas generation because the fuel costs were up more than 300 percent over typical prices.”
Another illustration comes from across the Atlantic in Ireland. As we just noted, the Emerald Isle is now green for two additional reasons, as wind energy reduced pollution and protected consumers’ pocketbooks from near-record natural gas prices by providing 24 percent of Ireland’s electricity for all of December.
The Irish Examiner noted two weeks ago that “the sustained wind volumes forced expensive gas powered plants off the system and this provided downward pressure on wholesale prices.” It quotes an energy trader noting that “the substantial contribution of wind energy helped reduce the monthly average wholesale electricity price by 5 percent.” The article further explains that wind energy played a critical role in driving the price of electricity down despite near-record natural gas prices.
Both recent cold snaps also highlight the value of wind energy for diversifying our energy mix, improving energy reliability and reducing energy costs for homes and businesses. Diversity inherently makes the power system more reliable by protecting against the unexpected failures that afflict all energy sources from time to time. PJM noted that dozens of power plants of all types failed during the last cold snap, and during this cold snap PJM experienced the abrupt and unexpected failure of several nuclear power plants.
The New York grid operator also highlighted that it received very high wind output when it needed it most during the last cold snap, while other forms of generation experienced a variety problems. While wind energy output does change with the wind speed, such changes occur far more slowly than the unexpected outages that frequently occur at large conventional power plants. Moreover, changes in wind energy output are predictable using weather forecasting, while conventional power plant failures are not, making them far more difficult and costly for grid operators to accommodate.
Wind energy output has been very strong throughout both recent cold spells in the Eastern U.S., keeping the lights on and saving consumers millions of dollars by keeping both electricity prices and natural gas prices in check. Wind power diversifies our energy mix during both extreme weather and normal conditions, providing consumers with more reliable and lower cost energy.
Visit EcoWatch’s RENEWABLES page for more related news on this topic.
In 2010, world leaders agreed to 20 targets to protect Earth's biodiversity over the next decade. By 2020, none of them had been met. Now, the question is whether the world can do any better once new targets are set during the meeting of the UN Convention on Biodiversity in Kunming, China later this year.
- Ocean Scientists Create Global Network to Help Save Biodiversity ... ›
- 5 Reasons Why Biodiversity Matters - EcoWatch ›
- 26 Organizations Working to Conserve Seed Biodiversity - EcoWatch ›
- The Top 10 Ocean Biodiversity Hotspots to Protect - EcoWatch ›
- New Platform Shows How to Protect Biodiversity and Save Planet ... ›
- These Scientists Are Listening to the Borneo Rainforest to Protect ... ›
EcoWatch Daily Newsletter
By Andrew Rosenberg
The first 24 hours of the administration of President Joe Biden were filled not only with ceremony, but also with real action. Executive orders and other directives were quickly signed. More actions have followed. All consequential. Many provide a basis for not just undoing actions of the previous administration, but also making real advances in public policy to protect public health, safety, and the environment.
- Here Are Biden's Day One Actions on Climate and Environment ... ›
- UCS Offers Science Advice for Biden Administration - EcoWatch ›
Trending
A first-of-its-kind study has examined the satellite record to see how the climate crisis is impacting all of the planet's ice.
- 'Ghost Forests' Are an Eerie Sign of Sea-Level Rise - EcoWatch ›
- Sea-Level Rise Takes Business Toll in North Carolina's Outer Banks ... ›
- Sea Level Rise Is Locked in Even If We Meet Paris Agreement ... ›
A Healthy Microbiome Builds a Strong Immune System That Could Help Defeat COVID-19
By Ana Maldonado-Contreras
Takeaways
- Your gut is home to trillions of bacteria that are vital for keeping you healthy.
- Some of these microbes help to regulate the immune system.
- New research, which has not yet been peer-reviewed, shows the presence of certain bacteria in the gut may reveal which people are more vulnerable to a more severe case of COVID-19.
You may not know it, but you have an army of microbes living inside of you that are essential for fighting off threats, including the virus that causes COVID-19.
How Do Resident Bacteria Keep You Healthy?
<p>Our immune defense is part of a complex biological response against harmful pathogens, such as viruses or bacteria. However, because our bodies are inhabited by trillions of mostly beneficial bacteria, virus and fungi, activation of our immune response is tightly regulated to distinguish between harmful and helpful microbes.</p><p>Our bacteria are spectacular companions diligently helping prime our immune system defenses to combat infections. A seminal study found that mice treated with antibiotics that eliminate bacteria in the gut exhibited an impaired immune response. These animals had low counts of virus-fighting white blood cells, weak antibody responses and poor production of a protein that is vital for <a href="https://doi.org/10.1073/pnas.1019378108" target="_blank">combating viral infection and modulating the immune response</a>.</p><p><a href="https://doi.org/10.1371/journal.pone.0184976" target="_blank" rel="noopener noreferrer">In another study</a>, mice were fed <em>Lactobacillus</em> bacteria, commonly used as probiotic in fermented food. These microbes reduced the severity of influenza infection. The <em>Lactobacillus</em>-treated mice did not lose weight and had only mild lung damage compared with untreated mice. Similarly, others have found that treatment of mice with <em>Lactobacillus</em> protects against different <a href="https://doi.org/10.1038/srep04638" target="_blank" rel="noopener noreferrer">subtypes of</a> <a href="https://doi.org/10.1038/s41598-017-17487-8" target="_blank" rel="noopener noreferrer">influenza</a> <a href="https://doi.org/10.1371/journal.ppat.1008072" target="_blank" rel="noopener noreferrer">virus</a> and human respiratory syncytial virus – the <a href="https://doi.org/10.1038/s41598-019-39602-7" target="_blank" rel="noopener noreferrer">major cause of viral bronchiolitis and pneumonia in children</a>.</p>Chronic Disease and Microbes
<p>Patients with chronic illnesses including Type 2 diabetes, obesity and cardiovascular disease exhibit a hyperactive immune system that fails to recognize a harmless stimulus and is linked to an altered gut microbiome.</p><p>In these chronic diseases, the gut microbiome lacks bacteria that activate <a href="https://doi.org/10.1126/science.1198469" target="_blank" rel="noopener noreferrer">immune cells</a> that block the response against harmless bacteria in our guts. Such alteration of the gut microbiome is also observed in <a href="https://doi.org/10.1073/pnas.1002601107" target="_blank" rel="noopener noreferrer">babies delivered by cesarean section</a>, individuals consuming a poor <a href="https://doi.org/10.1038/nature12820" target="_blank" rel="noopener noreferrer">diet</a> and the <a href="https://doi.org/10.1038/nature11053" target="_blank" rel="noopener noreferrer">elderly</a>.</p><p>In the U.S., 117 million individuals – about half the adult population – <a href="https://health.gov/our-work/food-nutrition/2015-2020-dietary-guidelines/guidelines/" target="_blank" rel="noopener noreferrer">suffer from Type 2 diabetes, obesity, cardiovascular disease or a combination of them</a>. That suggests that half of American adults carry a faulty microbiome army.</p><p>Research in my laboratory focuses on identifying gut bacteria that are critical for creating a balanced immune system, which fights life-threatening bacterial and viral infections, while tolerating the beneficial bacteria in and on us.</p><p>Given that diet affects the diversity of bacteria in the gut, <a href="https://www.umassmed.edu/nutrition/melody-trial-info/" target="_blank" rel="noopener noreferrer">my lab studies show how diet can be used</a> as a therapy for chronic diseases. Using different foods, people can shift their gut microbiome to one that boosts a healthy immune response.</p><p>A fraction of patients infected with SARS-CoV-2, the virus that causes COVID-19 disease, develop severe complications that require hospitalization in intensive care units. What do many of those patients have in common? <a href="https://www.cdc.gov/mmwr/volumes/69/wr/mm6912e2.htm" target="_blank" rel="noopener noreferrer">Old age</a> and chronic diet-related diseases like obesity, Type 2 diabetes and cardiovascular disease.</p><p><a href="http://doi.org/10.1016/j.jada.2008.12.019" target="_blank" rel="noopener noreferrer">Black and Latinx people are disproportionately affected by obesity, Type 2 diabetes and cardiovascular disease</a>, all of which are linked to poor nutrition. Thus, it is not a coincidence that <a href="https://www.cdc.gov/mmwr/volumes/69/wr/mm6933e1.htm" target="_blank" rel="noopener noreferrer">these groups have suffered more deaths from COVID-19</a> compared with whites. This is the case not only in the U.S. but also <a href="https://www.washingtonpost.com/world/europe/blacks-in-britain-are-four-times-as-likely-to-die-of-coronavirus-as-whites-data-show/2020/05/07/2dc76710-9067-11ea-9322-a29e75effc93_story.html" target="_blank" rel="noopener noreferrer">in Britain</a>.</p>Discovering Microbes That Predict COVID-19 Severity
<p>The COVID-19 pandemic has inspired me to shift my research and explore the role of the gut microbiome in the overly aggressive immune response against SARS-CoV-2 infection.</p><p>My colleagues and I have hypothesized that critically ill SARS-CoV-2 patients with conditions like obesity, Type 2 diabetes and cardiovascular disease exhibit an altered gut microbiome that aggravates <a href="https://theconversation.com/exercise-may-help-reduce-risk-of-deadly-covid-19-complication-ards-136922" target="_blank" rel="noopener noreferrer">acute respiratory distress syndrome</a>.</p><p>Acute respiratory distress syndrome, a life-threatening lung injury, in SARS-CoV-2 patients is thought to develop from a <a href="http://doi.org/10.1016/j.cytogfr.2020.05.003" target="_blank" rel="noopener noreferrer">fatal overreaction of the immune response</a> called a <a href="https://theconversation.com/blocking-the-deadly-cytokine-storm-is-a-vital-weapon-for-treating-covid-19-137690" target="_blank" rel="noopener noreferrer">cytokine storm</a> <a href="http://doi.org/10.1016/S2213-2600(20)30216-2" target="_blank" rel="noopener noreferrer">that causes an uncontrolled flood</a> <a href="http://doi.org/10.1016/S2213-2600(20)30216-2" target="_blank" rel="noopener noreferrer">of immune cells into the lungs</a>. In these patients, their own uncontrolled inflammatory immune response, rather than the virus itself, causes the <a href="http://doi.org/10.1007/s00134-020-05991-x" target="_blank" rel="noopener noreferrer">severe lung injury and multiorgan failures</a> that lead to death.</p><p>Several studies <a href="https://doi.org/10.1016/j.trsl.2020.08.004" target="_blank" rel="noopener noreferrer">described in one recent review</a> have identified an altered gut microbiome in patients with COVID-19. However, identification of specific bacteria within the microbiome that could predict COVID-19 severity is lacking.</p><p>To address this question, my colleagues and I recruited COVID-19 hospitalized patients with severe and moderate symptoms. We collected stool and saliva samples to determine whether bacteria within the gut and oral microbiome could predict COVID-19 severity. The identification of microbiome markers that can predict the clinical outcomes of COVID-19 disease is key to help prioritize patients needing urgent treatment.</p><p><a href="https://doi.org/10.1101/2021.01.05.20249061" target="_blank" rel="noopener noreferrer">We demonstrated</a>, in a paper which has not yet been peer reviewed, that the composition of the gut microbiome is the strongest predictor of COVID-19 severity compared to patient's clinical characteristics commonly used to do so. Specifically, we identified that the presence of a bacterium in the stool – called <em>Enterococcus faecalis</em>– was a robust predictor of COVID-19 severity. Not surprisingly, <em>Enterococcus faecalis</em> has been associated with <a href="https://doi.org/10.1053/j.gastro.2011.05.035" target="_blank" rel="noopener noreferrer">chronic</a> <a href="https://doi.org/10.1016/S0002-9440(10)61172-8" target="_blank" rel="noopener noreferrer">inflammation</a>.</p><p><em>Enterococcus faecalis</em> collected from feces can be grown outside of the body in clinical laboratories. Thus, an <em>E. faecalis</em> test might be a cost-effective, rapid and relatively easy way to identify patients who are likely to require more supportive care and therapeutic interventions to improve their chances of survival.</p><p>But it is not yet clear from our research what is the contribution of the altered microbiome in the immune response to SARS-CoV-2 infection. A recent study has shown that <a href="https://doi.org/10.1101/2020.12.11.416180" target="_blank" rel="noopener noreferrer">SARS-CoV-2 infection triggers an imbalance in immune cells</a> called <a href="https://doi.org/10.1111/imr.12170" target="_blank" rel="noopener noreferrer">T regulatory cells that are critical to immune balance</a>.</p><p>Bacteria from the gut microbiome are responsible for the <a href="https://doi.org/10.7554/eLife.30916.001" target="_blank" rel="noopener noreferrer">proper activation</a> <a href="https://doi.org/10.1126/science.1198469" target="_blank" rel="noopener noreferrer">of those T-regulatory</a> <a href="https://doi.org/10.1038/nri.2016.36" target="_blank" rel="noopener noreferrer">cells</a>. Thus, researchers like me need to take repeated patient stool, saliva and blood samples over a longer time frame to learn how the altered microbiome observed in COVID-19 patients can modulate COVID-19 disease severity, perhaps by altering the development of the T-regulatory cells.</p><p>As a Latina scientist investigating interactions between diet, microbiome and immunity, I must stress the importance of better policies to improve access to healthy foods, which lead to a healthier microbiome. It is also important to design culturally sensitive dietary interventions for Black and Latinx communities. While a good-quality diet might not prevent SARS-CoV-2 infection, it can treat the underlying conditions related to its severity.</p><p><em><a href="https://theconversation.com/profiles/ana-maldonado-contreras-1152969" target="_blank">Ana Maldonado-Contreras</a> is an assistant professor of Microbiology and Physiological Systems at the University of Massachusetts Medical School.</em></p><p><em>Disclosure statement: Ana Maldonado-Contreras receives funding from The Helmsley Charitable Trust and her work has been supported by the American Gastroenterological Association. She received The Charles A. King Trust Postdoctoral Research Fellowship. She is also member of the Diversity Committee of the American Gastroenterological Association.</em></p><p><em style="">Reposted with permission from <a href="https://theconversation.com/a-healthy-microbiome-builds-a-strong-immune-system-that-could-help-defeat-covid-19-145668" target="_blank" rel="noopener noreferrer" style="">The Conversation</a>. </em></p>By Jeff Masters, Ph.D.
The New Climate War: the fight to take back our planet is the latest must-read book by leading climate change scientist and communicator Michael Mann of Penn State University.
- 12 New Books Explore Fresh Approaches to Act on Climate Change ... ›
- Dr. Michael Mann on Climate Denial: 'It's Impaired Our Ability to ... ›