
By Tara Lohan
In January 2015 North Dakota experienced one of the worst environmental disasters in its history: A pipeline burst, spilling nearly 3 million gallons of briny, saltwater waste from nearby oil-drilling operations into two creek beds. The wastewater, which flowed all the way to the Missouri River, contained chloride concentrations high enough to kill any wildlife that encountered it.
It wasn't the first such disaster in the state. In 2006 a spill of close to 1 million gallons of fracking wastewater into the Yellowstone River resulted in a mass die-off of fish and plants. Cleanup of that spill was still ongoing at the time of the 2015 spill, nearly a decade later.
Spills like these highlight the dangers that come with unconventional fossil-fuel extraction techniques that go after hard-to-reach pockets of oil and gas using practices like horizontal drilling and high-volume hydraulic fracturing (otherwise known as fracking).
But events like these massive spills are just the tip of the iceberg. Other risks to wildlife can be more contained, subtle or hidden.
And while many of the after-effects of fracking have grabbed headlines for years — such as contaminated drinking water, earthquakes and even flammable faucets — the consequences for wildlife have so far been left out of the national conversation.
But those consequences are very real for a vast suite of animals including mussels, birds, fish, caribou and even fleas, and they're as varied as the species themselves. In some places wildlife pays the price when habitat is destroyed. Elsewhere the damage occurs when water is sucked away or polluted. Still other species can't take the traffic, noise and dust that accompany extraction operations.
All this damage makes sense when you think about fracking's outsized footprint.
It starts with the land cleared for the well pad, followed by sucking large volumes of water (between 1.5 and 16 million gallons per well) out of rivers, streams or groundwater.
Fracking trucks and equipment in Doddridge Co, West Virginia.
Tara Lohan
Then there's the sand that's mined for use during the fracturing of underground rock to release natural gas or oil. There are also new pipelines, compressor stations and other related infrastructure that need to be constructed. And there's the truck traffic that surges during operations, or the disposal of fracking wastewater, either in streams or underground.
The cumulative footprint of a single new well can be as large as 30 acres. In places where hundreds or thousands of wells spring up across a landscape, it's easy to imagine the toll on wildlife — and even cases with ecosystem-wide implications.
"Studies show that there are multiple pathways to wildlife being harmed," said ecologist Sandra Steingraber, a distinguished scholar in residence at Ithaca College who has worked for a decade compiling research on the health effects of fracking. "Biodiversity is a determinant of public health — without these wild animals doing ecosystem services for us, we can't survive."
Losing Ground
The most obvious threats fracking poses to wildlife comes in the form of habitat loss.
As rural areas become industrialized with each new well pad and its associated infrastructure, vital habitat for wildlife is altered or destroyed.
Habitat fragmentation in North Dakota's Bakken shale.
Tara Lohan
And it's not just the area containing the well. The land or water just outside of the operation, known as "edge habitat," also degrades with an increase in the spread of invasive plant species, among other concerns.
And large-scale development, such as miles-long pipelines, can change the way species move and hunt, often resulting in an increase in predation. The oil and gas development in Alberta, Canada, for example, created "wolf highways" that gave the predators easy access to an endangered herd of woodland caribou.
Roads, another kind of fragmentation, can be particularly dangerous for wildlife. A single fracked well can be responsible for 3,300 one-way truck trips during its operational lifespan, and each journey can injure or kill wildlife large and small. After all, it's hard to get out of the way of a tanker truck carrying 80,000 pounds of sand.
And then there's the big picture. Drilling within large, "core" forest areas previously located far from human development can be permanently detrimental for species such as migratory songbirds.
In one study, published in Biological Conservation in 2016, researchers examined the effects of unconventional gas drilling on forest habits and populations of birds in an area of West Virginia overlaying the Marcellus and Utica shales. The area has been at the center of the shale gas boom, with the number of unconventional wells in central Appalachia jumping from 111 in 2005 to 14,022 by the end of 2015. The study found that shale-gas development there during that period resulted in a 12.4 percent loss of core forest and increased edge habitat by more than 50 percent — and that, in turn, changed the communities of birds found in the forest.
The areas near well pads experienced an overall decline in "forest specialists" — birds that prefer interior forest habitat, among them the hooded warbler and Kentucky warbler, which are of high conservation priority, as well as cerulean warblers. These sky-blue endangered migratory songbirds have been dropping in numbers for decades, but researchers noted that the decline was 15 percent higher in their study area than in the greater Appalachian Mountains region during the same period.
Kentucky warblers prefer large core forest habitat and researchers have found they decline in numbers around shale gas development.
Andrew Weitzel / CC BY-SA 2.0
"For migratory songbirds, large blocks of forest are very important," explains Margaret C. Brittingham, a professor of wildlife resources at Penn State University who has studied the effects of fracking on wildlife. The birds do best in interior forest habitat with mature trees. They also serve as an important part of the forest ecosystem, helping to prevent or suppress insect outbreaks that can damage trees. "They're co-evolved with the forest, feeding on insects and keeping those forests healthy," she said.
Not all species declined in numbers from fracking development. The study found an increase in the kinds of birds that do well among humans and in developed areas — "habitat generalists" such as the American robin, blue jay and brown-headed cowbird, the latter of which are notorious brood parasites that leave their eggs in nests of other birds.
"I think the most alarming thing about all of this is what bird declines may indicate about the declining health of overall ecosystems," said Laura Farwell, a postdoctoral research associate in the department of Forest and Wildlife Ecology at the University of Wisconsin-Madison and lead author of the Biological Conservation study. "I know it's a cliché, but forest interior birds truly are 'canaries in the coal mine' for Appalachian forests experiencing rapid loss and fragmentation."
Farwell adds that many other kinds of development contribute to habitat loss that result in biodiversity declines. Fracking is one more added pressure, but the consequences are quite significant.
"It just happens to be disproportionately affecting some of the largest remaining areas of undisturbed, mature forest left in the eastern U.S., and these forests are incredibly valuable for biodiversity," she said.
Out West the industry is carving up a different kind of habitat, and that has other species on the ropes. Greater sage grouse, for example, depend on large home ranges composed of intact areas of sagebrush. Cattle ranching and development of all kinds have pushed the grouse near extinction, and continued unbridled oil and gas extraction in its remaining habitat could tip it over the edge.
A 2014 study co-authored by Brittingham found that oil and gas infrastructure and related disturbances to sage grouse can cause the birds' populations to decline — or even disappear in areas with particularly high levels of oil and gas development.
Sage grouse have also been shown to exhibit high levels of stress from noise.
Noise poses additional risks for birds that depend on their hearing. A study published in Biological Conservation in 2016 found that noise from compressor stations, which run 24 hours a day, reduced the ability of northern saw-whet owls to catch prey. The researchers found that for owls and other "acoustically specialized predators," noise can cause significant negative impacts on behavior, like a decreased ability to hunt, and that can ripple through the ecosystem.
Lights on a drilling site in West Virginia can affect nocturnal wildlife.
Tara Lohan
Light, too, can be a problem. Oil and gas operations in some places have turned once-dark rural areas into blazing mini-cities in quick time. A 2012 photo revealed that gas burned off from wells in North Dakota's Bakken Shale was so bright it was visible from space — something not seen just six years before. Light pollution like this can be deadly for migratory birds and disrupt other nocturnal animals.
It’s in the Water
The fracking process uses a lot of water and much of that contaminated H2O returns to the surface, bringing with it heavy metals, radioactivity, toxic chemicals (many of which are industry trade secrets) and high levels of salinity. Disposing of all that wastewater has created headaches for the industry and in some cases it's now proving to endanger wildlife.
Spills or intentional dumping of wastewater or fracking fluid released 180 million gallons into the environment between 2009 and 2014, according to an investigation by the Associated Press. Unsafe levels of some contaminants have been found to persist for years, as was the case in North Dakota.
Not all spills and intentional releases of wastewater in streams create noticeable impacts like fish going belly up — some are more subtle and harder to see — but they may still take a real toll on aquatic life.
A 2019 study in Ecotoxicology and Environmental Safety looked at what happens when insects called water fleas encounter a fracking-fluid spill. Researchers found that even when the fluids were diluted in a stream, their high salinity could decrease insect mobility and survival. The Canadian province of Alberta, the researchers noted, has recorded 100 such large-volume spills.
Lowly water fleas — in this case a species called Daphnia magna — may not seem like animals we should worry about, but like so many small creatures, they occupy an important niche.
"They are the basis of the freshwater ecosystem," Steingraber explained. "When the water fleas are gone, the guys that feed on them are gone — frogs and fish die, and those that feed on them die and suddenly you have a biodiversity problem because you've knocked out a species at the bottom of the aquatic food chain."
Some of this may already be playing out in other locations. A 2016 study published in Ecotoxicology that found a decrease in biodiversity of macroinvertebrates in Pennsylvania streams where fracking was occurring in the watershed — and, even worse, "no fish or no fish diversity at streams with documented frackwater fluid spills." In some cases streams that once contained large numbers of brook trout had none left. The researchers concluded that "fracking has the potential to alter aquatic biodiversity…at the base of food webs."
Brook trout have disappeared from some streams in central Appalachia following fracking spills.
USFWS
Elsewhere, it's possible that contamination of surface waters has already taken a toll on the Louisiana waterthrush (Parkesia motacilla), a bird that breeds along forest headwater streams and feeds on macroinvertebrates. A 2015 study published in Ecosphere found that shale gas development had negative effects on the nest survival and productivity of waterthrushes and the researchers posited that "indirect effects on stream and terrestrial food webs from possible contamination" by the oil and gas industry could be to blame.
The research, which looked at sites in both the Marcellus and Fayetteville shale regions, showed that the birds' feathers contained elevated levels of barium and strontium — two heavy metals associated with the drilling process — in areas where fracking had taken place. Much like when lead shows up in a human's hair, the presence of these metals in the birds' feathers is a sign that contaminants in the environment are making their way into animals' bodies.
And that raises even bigger concerns.
As the researchers concluded in their paper: "Our finding of significantly higher levels of barium and strontium also suggests the possibility of surface water contamination by any of the hundreds of chemicals that may be used in hydraulic fracturing, including friction reducers, acids, biocides, corrosion and scale inhibitors, pH adjusting agents and surfactants."
A similar line of inquiry is being pursued by other researchers. Nathaniel Warner, a professor of civil and environmental engineering at Penn State University, has been using the shells of freshwater mussels to read the changes in water chemistry in Pennsylvania's Allegheny River. Mussels record environmental conditions in their shells each year — much like tree rings.
Warner and his colleagues have also found elevated levels of strontium in the shells of mussels living downstream from a site where treated fracking wastewater was discharged. Strontium, which is found in high concentrations in oil and gas wastewaters, is a naturally occurring metal with some medical benefits but which in large exposures can cause bone loss and other side effects.
But Warner says they are still trying to determine what the impacts are for mussels and aquatic ecosystems — not to mention the people who get their dinner from the river.
"We haven't really gotten to the point where we can say this is harmful or not," he said. "We really focused on the hard shell itself. But now we're looking more at what happens in that soft tissue because muskrats and fish don't really eat the shell that much, but they eat the soft tissue. And so what levels of contaminants or pollution ended up in that soft tissue compared to the shell?" He said that's probably more important for determining what this really means for wildlife or even human health.
University of Wisconsin's Farwell says that she'd also like to see more research on what the accumulation of contaminants in the bodies of waterthrushes means for other wildlife and for humans. "Air pollution is another important issue to consider," she added. "I'm not aware of any current studies that have looked directly at impacts of fracking air pollution on wildlife."
You can add these topics to the long list researchers are hoping to explore, but there will still be a lot about how fracking and other extraction technologies are affecting wildlife that we don't know. And with natural gas still projected to be one of the fastest growing energy sources in the United States, the time to understand its impacts on wildlife grows short.
"The industry boomed at such a rapid pace, researchers and policymakers could barely keep up," she said. "And in most cases, we don't have baseline data at impacted sites to compare with current numbers. Unfortunately, most of us studying fracking impacts have been playing a game of catch-up since the beginning."
Reposted with permission from our media associate The Revelator.
Cities Can Help Migrating Birds on Their Way By Planting More Trees and Turning Lights Off at Night
By Frank La Sorte and Kyle Horton
Millions of birds travel between their breeding and wintering grounds during spring and autumn migration, creating one of the greatest spectacles of the natural world. These journeys often span incredible distances. For example, the Blackpoll warbler, which weighs less than half an ounce, may travel up to 1,500 miles between its nesting grounds in Canada and its wintering grounds in the Caribbean and South America.
Blackpoll warbler abundance in breeding, non-breeding and migration seasons. Cornell Lab of Ornithology / CC BY-ND
<p>For many species, these journeys take place at night, when skies typically are calmer and predators are less active. Scientists do not have a good understanding yet of how birds navigate effectively at night over long distances.</p><p><span></span>We study bird migration and how it is being affected by factors ranging from <a href="https://scholar.google.com/citations?user=S04C3UMAAAAJ&hl=en" target="_blank">climate change</a> to <a href="https://scholar.google.com/citations?user=pPk38-8AAAAJ&hl=en" target="_blank">artificial light at night</a>. In a recent study, we used millions of bird observations by citizen scientists to document the <a href="https://doi.org/10.1016/j.envpol.2020.116085" target="_blank">occurrence of migratory bird species in 333 U.S. cities</a> during the winter, spring, summer and autumn.</p>Blackpoll warbler. PJTurgeon / Wikipedia
<p>We used this information to determine how the number of migratory bird species varies based on each city's level of <a href="https://www.britannica.com/science/light-pollution" target="_blank" rel="noopener noreferrer">light pollution</a> – brightening of the night sky caused by artificial light sources, such as buildings and streetlights. We also explored how species numbers vary based on the quantity of tree canopy cover and impervious surface, such as concrete and asphalt, within each city. Our findings show that cities can help migrating birds by planting more trees and reducing light pollution, especially during spring and autumn migration.</p>Declining Bird Populations
<p>Urban areas contain numerous dangers for migratory birds. The biggest threat is the risk of <a href="https://doi.org/10.1650/CONDOR-13-090.1" target="_blank">colliding with buildings or communication towers</a>. Many migratory bird populations have <a href="http://dx.doi.org/10.1126/science.aaw1313" target="_blank">declined over the past 50 years</a>, and it is possible that light pollution from cities is contributing to these losses.</p><p>Scientists widely agree that light pollution can <a href="https://doi.org/10.1073/pnas.1708574114" target="_blank">severely disorient migratory birds</a> and make it hard for them to navigate. Studies have shown that birds will cluster around brightly lit structures, much like insects flying around a porch light at night. Cities are the <a href="https://doi.org/10.1002/fee.2029" target="_blank" rel="noopener noreferrer">primary source of light pollution for migratory birds</a>, and these species tend to be more abundant within cities <a href="https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13792" target="_blank" rel="noopener noreferrer">during migration</a>, especially in <a href="https://doi.org/10.1016/j.landurbplan.2020.103892" target="_blank" rel="noopener noreferrer">city parks</a>.</p>Composite image of the continental U.S. at night from satellite photos. NASA Earth Observatory images by Joshua Stevens, using Suomi NPP VIIRS data from Miguel Román, NASA's Goddard Space Flight Center
The Power of Citizen Science
<p>It's not easy to observe and document bird migration, especially for species that migrate at night. The main challenge is that many of these species are very small, which limits scientists' ability to use electronic tracking devices.</p><p>With the growth of the internet and other information technologies, new data resources are becoming available that are making it possible to overcome some of these challenges. <a href="https://doi.org/10.1038/d41586-018-07106-5" target="_blank">Citizen science initiatives</a> in which volunteers use online portals to enter their observations of the natural world have become an important resource for researchers.</p><p>One such initiative, <a href="https://ebird.org/home" target="_blank" rel="noopener noreferrer">eBird</a>, allows bird-watchers around the globe to share their observations from any location and time. This has produced one of the <a href="https://doi.org/10.1111/ecog.04632" target="_blank" rel="noopener noreferrer">largest ecological citizen-science databases in the world</a>. To date, eBird contains over 922 million bird observations compiled by over 617,000 participants.</p>Light Pollution Both Attracts and Repels Migratory Birds
<p>Migratory bird species have evolved to use certain migration routes and types of habitat, such as forests, grasslands or marshes. While humans may enjoy seeing migratory birds appear in urban areas, it's generally not good for bird populations. In addition to the many hazards that exist in urban areas, cities typically lack the food resources and cover that birds need during migration or when raising their young. As scientists, we're concerned when we see evidence that migratory birds are being drawn away from their traditional migration routes and natural habitats.</p><p>Through our analysis of eBird data, we found that cities contained the greatest numbers of migratory bird species during spring and autumn migration. Higher levels of light pollution were associated with more species during migration – evidence that light pollution attracts migratory birds to cities across the U.S. This is cause for concern, as it shows that the influence of light pollution on migratory behavior is strong enough to increase the number of species that would normally be found in urban areas.</p><p>In contrast, we found that higher levels of light pollution were associated with fewer migratory bird species during the summer and winter. This is likely due to the scarcity of suitable habitat in cities, such as large forest patches, in combination with the adverse affects of light pollution on bird behavior and health. In addition, during these seasons, migratory birds are active only during the day and their populations are largely stationary, creating few opportunities for light pollution to attract them to urban areas.</p>Trees and Pavement
<p>We found that tree canopy cover was associated with more migratory bird species during spring migration and the summer. Trees provide important habitat for migratory birds during migration and the breeding season, so the presence of trees can have a strong effect on the number of migratory bird species that occur in cities.</p><p>Finally, we found that higher levels of impervious surface were associated with more migratory bird species during the winter. This result is somewhat surprising. It could be a product of the <a href="https://www.epa.gov/heatislands" target="_blank">urban heat island effect</a> – the fact that structures and paved surfaces in cities absorb and reemit more of the sun's heat than natural surfaces. Replacing vegetation with buildings, roads and parking lots can therefore make cities significantly warmer than surrounding lands. This effect could reduce cold stress on birds and increase food resources, such as insect populations, during the winter.</p><p>Our research adds to our understanding of how conditions in cities can both help and hurt migratory bird populations. We hope that our findings will inform urban planning initiatives and strategies to reduce the harmful effects of cities on migratory birds through such measures as <a href="https://www.arborday.org/programs/treecityusa/index.cfm" target="_blank" rel="noopener noreferrer">planting more trees</a> and initiating <a href="https://aeroecolab.com/uslights" target="_blank" rel="noopener noreferrer">lights-out programs</a>. Efforts to make it easier for migratory birds to complete their incredible journeys will help maintain their populations into the future.</p><p><em><span style="background-color: initial;"><a href="https://theconversation.com/profiles/frank-la-sorte-1191494" target="_blank">Frank La Sorte</a> is a r</span>esearch associate at the </em><em>Cornell Lab of Ornithology, Cornell University. <a href="https://theconversation.com/profiles/kyle-horton-1191498" target="_blank">Kyle Horton</a> is an assistant professor of Fish, Wildlife, and Conservation Biology at the Colorado State University.</em></p><p><em></em><em>Disclosure statement: Frank La Sorte receives funding from The Wolf Creek Charitable Foundation and the National Science Foundation (DBI-1939187). K</em><em>yle Horton does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.</em></p><p><em>Reposted with permission from <a href="https://theconversation.com/cities-can-help-migrating-birds-on-their-way-by-planting-more-trees-and-turning-lights-off-at-night-152573" target="_blank">The Conversation</a>. </em></p>EcoWatch Daily Newsletter
By Lynne Peeples
Editor's note: This story is part of a nine-month investigation of drinking water contamination across the U.S. The series is supported by funding from the Park Foundation and Water Foundation. Read the launch story, "Thirsting for Solutions," here.
In late September 2020, officials in Wrangell, Alaska, warned residents who were elderly, pregnant or had health problems to avoid drinking the city's tap water — unless they could filter it on their own.
Unintended Consequences
<p>Chemists first discovered disinfection by-products in treated drinking water in the 1970s. The trihalomethanes they found, they determined, had resulted from the reaction of chlorine with natural organic matter. Since then, scientists have identified more than 700 additional disinfection by-products. "And those only represent a portion. We still don't know half of them," says Richardson, whose lab has identified hundreds of disinfection by-products. </p>What’s Regulated and What’s Not?
<p>The U.S. Environmental Protection Agency (EPA) currently regulates 11 disinfection by-products — including a handful of trihalomethanes (THM) and haloacetic acids (HAA). While these represent only a small fraction of all disinfection by-products, EPA aims to use their presence to indicate the presence of other disinfection by-products. "The general idea is if you control THMs and HAAs, you implicitly or by default control everything else as well," says Korshin.</p><p>EPA also requires drinking water facilities to use techniques to reduce the concentration of organic materials before applying disinfectants, and regulates the quantity of disinfectants that systems use. These rules ultimately can help control levels of disinfection by-products in drinking water.</p>Click the image for an interactive version of this chart on the Environmental Working Group website.
<p>Still, some scientists and advocates argue that current regulations do not go far enough to protect the public. Many question whether the government is regulating the right disinfection by-products, and if water systems are doing enough to reduce disinfection by-products. EPA is now seeking public input as it considers potential revisions to regulations, including the possibility of regulating additional by-products. The agency held a <a href="https://www.epa.gov/dwsixyearreview/potential-revisions-microbial-and-disinfection-byproducts-rules" target="_blank">two-day public meeting</a> in October 2020 and plans to hold additional public meetings throughout 2021.</p><p>When EPA set regulations on disinfection by-products between the 1970s and early 2000s, the agency, as well as the scientific community, was primarily focused on by-products of reactions between organics and chlorine — historically the most common drinking water disinfectant. But the science has become increasingly clear that these chlorinated chemicals represent a fraction of the by-product problem.</p><p>For example, bromide or iodide can get caught up in the reaction, too. This is common where seawater penetrates a drinking water source. By itself, bromide is innocuous, says Korshin. "But it is extremely [reactive] with organics," he says. "As bromide levels increase with normal treatment, then concentrations of brominated disinfection by-products will increase quite rapidly."</p><p><a href="https://pubmed.ncbi.nlm.nih.gov/15487777/" target="_blank">Emerging</a> <a href="https://pubs.acs.org/doi/10.1021/acs.est.7b05440" target="_blank" rel="noopener noreferrer">data</a> indicate that brominated and iodinated by-products are potentially more harmful than the regulated by-products.</p><p>Almost half of the U.S. population lives within 50 miles of either the Atlantic or Pacific coasts, where saltwater intrusion can be a problem for drinking water supplies. "In the U.S., the rule of thumb is the closer to the sea, the more bromide you have," says Korshin, noting there are also places where bromide naturally leaches out from the soil. Still, some coastal areas tend to be spared. For example, the city of Seattle's water comes from the mountains, never making contact with seawater and tending to pick up minimal organic matter.</p><p>Hazardous disinfection by-products can also be an issue with desalination for drinking water. "As <a href="https://ensia.com/features/can-saltwater-quench-our-growing-thirst/" target="_blank" rel="noopener noreferrer">desalination</a> practices become more economical, then the issue of controlling bromide becomes quite important," adds Korshin.</p>Other Hot Spots
<p>Coastal areas represent just one type of hot spot for disinfection by-products. Agricultural regions tend to send organic matter — such as fertilizer and animal waste — into waterways. Areas with warmer climates generally have higher levels of natural organic matter. And nearly any urban area can be prone to stormwater runoff or combined sewer overflows, which can contain rainwater as well as untreated human waste, industrial wastewater, hazardous materials and organic debris. These events are especially common along the East Coast, notes Sydney Evans, a science analyst with the nonprofit Environmental Working Group (EWG, a collaborator on <a href="https://ensia.com/ensia-collections/troubled-waters/" target="_blank">this reporting project</a>).</p><p>The only drinking water sources that might be altogether free of disinfection by-products, suggests Richardson, are private wells that are not treated with disinfectants. She used to drink water from her own well. "It was always cold, coming from great depth through clay and granite," she says. "It was fabulous."</p><p>Today, Richardson gets her water from a city system that uses chloramine.</p>Toxic Treadmill
<p>Most community water systems in the U.S. use chlorine for disinfection in their treatment plant. Because disinfectants are needed to prevent bacteria growth as the water travels to the homes at the ends of the distribution lines, sometimes a second round of disinfection is also added in the pipes.</p><p>Here, systems usually opt for either chlorine or chloramine. "Chloramination is more long-lasting and does not form as many disinfection by-products through the system," says Steve Via, director of federal relations at the American Water Works Association. "Some studies show that chloramination may be more protective against organisms that inhabit biofilms such as Legionella."</p>Alternative Approaches
<p>When he moved to the U.S. from Germany, Prasse says he immediately noticed the bad taste of the water. "You can taste the chlorine here. That's not the case in Germany," he says.</p><p>In his home country, water systems use chlorine — if at all — at lower concentrations and at the very end of treatment. In the Netherlands, <a href="https://dwes.copernicus.org/articles/2/1/2009/dwes-2-1-2009.pdf" target="_blank">chlorine isn't used at all</a> as the risks are considered to outweigh the benefits, says Prasse. He notes the challenge in making a convincing connection between exposure to low concentrations of disinfection by-products and health effects, such as cancer, that can occur decades later. In contrast, exposure to a pathogen can make someone sick very quickly.</p><p>But many countries in Europe have not waited for proof and have taken a precautionary approach to reduce potential risk. The emphasis there is on alternative approaches for primary disinfection such as ozone or <a href="https://www.pbs.org/wgbh/nova/article/eco-friendly-way-disinfect-water-using-light/" target="_blank" rel="noopener noreferrer">ultraviolet light</a>. Reverse osmosis is among the "high-end" options, used to remove organic and inorganics from the water. While expensive, says Prasse, the method of forcing water through a semipermeable membrane is growing in popularity for systems that want to reuse wastewater for drinking water purposes.</p><p>Remucal notes that some treatment technologies may be good at removing a particular type of contaminant while being ineffective at removing another. "We need to think about the whole soup when we think about treatment," she says. What's more, Remucal explains, the mixture of contaminants may impact the body differently than any one chemical on its own. </p><p>Richardson's preferred treatment method is filtering the water with granulated activated carbon, followed by a low dose of chlorine.</p><p>Granulated activated carbon is essentially the same stuff that's in a household filter. (EWG recommends that consumers use a <a href="https://www.ewg.org/tapwater/reviewed-disinfection-byproducts.php#:~:text=EWG%20recommends%20using%20a%20home,as%20trihalomethanes%20and%20haloacetic%20acids." target="_blank" rel="noopener noreferrer">countertop carbon filter</a> to reduce levels of disinfection by-products.) While such a filter "would remove disinfection by-products after they're formed, in the plant they remove precursors before they form by-products," explains Richardson. She coauthored a <a href="https://pubs.acs.org/doi/10.1021/acs.est.9b00023" target="_blank" rel="noopener noreferrer">2019 paper</a> that concluded the treatment method is effective in reducing a wide range of regulated and unregulated disinfection by-products.</p><br>Greater Cincinnati Water Works installed a granulated activated carbon system in 1992, and is still one of relatively few full-scale plants that uses the technology. Courtesy of Greater Cincinnati Water Works.
<p>Despite the technology and its benefits being known for decades, relatively few full-scale plants use granulated active carbon. They often cite its high cost, Richardson says. "They say that, but the city of Cincinnati [Ohio] has not gone bankrupt using it," she says. "So, I'm not buying that argument anymore."</p><p>Greater Cincinnati Water Works installed a granulated activated carbon system in 1992. On a video call in December, Jeff Swertfeger, the superintendent of Greater Cincinnati Water Works, poured grains of what looks like black sand out of a glass tube and into his hand. It was actually crushed coal that has been baked in a furnace. Under a microscope, each grain looks like a sponge, said Swertfeger. When water passes over the carbon grains, he explained, open tunnels and pores provide extensive surface area to absorb contaminants.</p><p>While the granulated activated carbon initially was installed to address chemical spills and other industrial contamination concerns in the Ohio River, Cincinnati's main drinking water source, Swertfeger notes that the substance has turned out to "remove a lot of other stuff, too," including <a href="https://ensia.com/features/drinking-water-contamination-pfas-health/" target="_blank" rel="noopener noreferrer">PFAS</a> and disinfection by-product precursors.</p><p>"We use about one-third the amount of chlorine as we did before. It smells and tastes a lot better," he says. "The use of granulated activated carbon has resulted in lower disinfection by-products across the board."</p><p>Richardson is optimistic about being able to reduce risks from disinfection by-products in the future. "If we're smart, we can still kill those pathogens and lower our chemical disinfection by-product exposure at the same time," she says.</p><p><em>Reposted with permission from </em><em><a href="https://ensia.com/features/drinking-water-disinfection-byproducts-pathogens/" target="_blank">Ensia</a>. </em><a href="https://www.ecowatch.com/r/entryeditor/2649953730#/" target="_self"></a></p>Trending
At a time of impending global food scarcity, cell-based meats and seafood have been heralded as the future of food.
- Most Meat Will Be Plant-Based or Lab-Grown in 20 Years, Analysts ... ›
- Lab-Grown Meat Debate Overlooks Cows' Range of Use Worldwide ... ›
- Will Plant-Based Meat Become the New Fast Food? - EcoWatch ›
One city in New Zealand knows what its priorities are.
Dunedin, the second largest city on New Zealand's South Island, has closed a popular road to protect a mother sea lion and her pup, The Guardian reported.
piyaset / iStock / Getty Images Plus
In an alarming new study, scientists found that climate change is already harming children's diets.
- No Country Is Protecting Children's Health, Major Study Finds ... ›
- 'Every Child Born Today Will Be Profoundly Affected by Climate ... ›