Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

A Teen Scientist Helped Me Discover Tons of Golf Balls Polluting the Ocean

Insights + Opinion
A Teen Scientist Helped Me Discover Tons of Golf Balls Polluting the Ocean
Teenager Alex Weber and friends collected nearly 40,000 golf balls hit into the ocean from a handful of California golf courses. Alex Weber / CC BY-ND

By Matthew Savoca

Plastic pollution in the world's oceans has become a global environmental crisis. Many people have seen images that seem to capture it, such as beaches carpeted with plastic trash or a seahorse gripping a cotton swab with its tail.

As a scientist researching marine plastic pollution, I thought I had seen a lot. Then, early in 2017, I heard from Alex Weber, a junior at Carmel High School in California.


Alex emailed me after reading my scientific work, which caught my eye, since very few high schoolers spend their time reading scientific articles. She was looking for guidance on an unusual environmental problem. While snorkeling in the Monterey Bay National Marine Sanctuary near the town of Carmel-by-the-Sea, Alex and her friend Jack Johnston had repeatedly come across large numbers of golf balls on the ocean floor.

As environmentally conscious teens, they started removing golf balls from the water, one by one. By the time Alex contacted me, they had retrieved over 10,000 golf balls—more than half a ton.

Dense aggregations of golf balls littering the sea floor in the Monterey Bay National Marine Sanctuary, CaliforniaAlex Weber, CC BY-ND

Golf balls sink, so they don't become eyesores for future golfers and beachgoers. As a result, this issue had gone largely unnoticed. But Alex had stumbled across something big: a point source of marine debris—one that comes from a single, identifiable place—polluting federally protected waters. Our newly published study details the scope of this unexpected marine pollutant and some ways in which it could affect marine life.

Cleaning Up the Mess

Many popular golf courses dot the central California coast and use the ocean as a hazard or an out-of-bounds. The most famous course, Pebble Beach Golf Links, is site of the 2019 U.S. Open Championship.

Alex wanted to create a lasting solution to this problem. I told her that the way to do it was to meticulously plan and systematically record all future golf ball collections. Our goal was to produce a peer-reviewed scientific paper documenting the scope of the problem, and to propose a plan of action for golf courses to address it.

Alex, her friends and her father paddled, dove, heaved and hauled. By mid-2018 the results were startling: They had collected nearly 40,000 golf balls from three sites near coastal golf courses: Cypress Point, Pebble Beach and the Carmel River Mouth. And following Alex's encouragement, Pebble Beach employees started to retrieve golf balls from beaches next to their course, amassing more than 10,000 additional balls.

Alex Weber and Jack Johnston collecting golf balls from the sea floorAlex Weber, CC BY-ND

In total, we collected 50,681 golf balls from the shoreline and shallow waters. This represented roughly 2.5 tons of debris—approximately the weight of a pickup truck. By multiplying the average number of balls lost per round played (1 to 3) and the average number of rounds played annually at Pebble Beach, we estimated that patrons at these popular courses may lose more than 100,000 balls per year to the surrounding environment.

A harbor seal investigates a member of the golf ball recovery team. Alex Weber, CC BY-ND

The Toxicity of Golf Balls

Modern golf balls are made of a polyurethane elastomer shell and a synthetic rubber core. Manufacturers add zinc oxide, zinc acrylate and benzoyl peroxide to the solid core for flexibility and durability. These substances are also acutely toxic to marine life.

When golf balls are hit into the ocean, they immediately sink to the bottom. No ill effects on local wildlife have been documented to date from exposure to golf balls. But as the balls degrade and fragment at sea, they may leach chemicals and microplastics into the water or sediments. Moreover, if the balls break into small fragments, fish, birds or other animals could ingest them.

The majority of the balls we collected showed only light wear. Some could even have been resold and played. However, others were severely degraded and fragmented by the persistent mechanical action of breaking waves and unremitting swell in the dynamic intertidal and nearshore environments. We estimated that more than 60 pounds of irrecoverable microplastic had been shed from the balls we collected.

A sea otter holding a golf ball at one of our study sitesAlex Weber, CC BY-ND

Game-Changer

Thanks to Alex Weber, we now know that golf balls erode at sea over time, producing dangerous microplastics. Recovering the balls soon after they are hit into the ocean is one way to mitigate their impacts. Initially, golf course managers were surprised by our findings, but now they are working with the Monterey Bay National Marine Sanctuary to address the problem.

Alex is also working with managers at the sanctuary to develop cleanup procedures that can prevent golf ball pollution in these waters from ever reaching these levels again. Although her study was local, her findings are worrisome for other regions with coastal golf courses. Nonetheless, they send a positive message: If a high school student can accomplish this much through relentless hard work and dedication, anyone can.

Reposted with permission from our media associate The Conversation.

Sustainable t-shirts by Allbirds are made from a new, low-carbon material that uses a mineral extract from discarded snow crab shells. Jerry Buttles / Allbirds

In the age of consumption, sustainability innovations can help shift cultural habits and protect dwindling natural resources. Improvements in source materials, product durability and end-of-life disposal procedures can create consumer products that are better for the Earth throughout their lifecycles. Three recent advancements hope to make a difference.

Read More Show Less

EcoWatch Daily Newsletter

A net-casting ogre-faced spider. CBG Photography Group, Centre for Biodiversity Genomics / CC BY-SA 3.0

Just in time for Halloween, scientists at Cornell University have published some frightening research, especially if you're an insect!

The ghoulishly named ogre-faced spider can "hear" with its legs and use that ability to catch insects flying behind it, the study published in Current Biology Thursday concluded.

"Spiders are sensitive to airborne sound," Cornell professor emeritus Dr. Charles Walcott, who was not involved with the study, told the Cornell Chronicle. "That's the big message really."

The net-casting, ogre-faced spider (Deinopis spinosa) has a unique hunting strategy, as study coauthor Cornell University postdoctoral researcher Jay Stafstrom explained in a video.

They hunt only at night using a special kind of web: an A-shaped frame made from non-sticky silk that supports a fuzzy rectangle that they hold with their front forelegs and use to trap prey.

They do this in two ways. In a maneuver called a "forward strike," they pounce down on prey moving beneath them on the ground. This is enabled by their large eyes — the biggest of any spider. These eyes give them 2,000 times the night vision that we have, Science explained.

But the spiders can also perform a move called the "backward strike," Stafstrom explained, in which they reach their legs behind them and catch insects flying through the air.

"So here comes a flying bug and somehow the spider gets information on the sound direction and its distance. The spiders time the 200-millisecond leap if the fly is within its capture zone – much like an over-the-shoulder catch. The spider gets its prey. They're accurate," coauthor Ronald Hoy, the D & D Joslovitz Merksamer Professor in the Department of Neurobiology and Behavior in the College of Arts and Sciences, told the Cornell Chronicle.

What the researchers wanted to understand was how the spiders could tell what was moving behind them when they have no ears.

It isn't a question of peripheral vision. In a 2016 study, the same team blindfolded the spiders and sent them out to hunt, Science explained. This prevented the spiders from making their forward strikes, but they were still able to catch prey using the backwards strike. The researchers thought the spiders were "hearing" their prey with the sensors on the tips of their legs. All spiders have these sensors, but scientists had previously thought they were only able to detect vibrations through surfaces, not sounds in the air.

To test how well the ogre-faced spiders could actually hear, the researchers conducted a two-part experiment.

First, they inserted electrodes into removed spider legs and into the brains of intact spiders. They put the spiders and the legs into a vibration-proof booth and played sounds from two meters (approximately 6.5 feet) away. The spiders and the legs responded to sounds from 100 hertz to 10,000 hertz.

Next, they played the five sounds that had triggered the biggest response to 25 spiders in the wild and 51 spiders in the lab. More than half the spiders did the "backward strike" move when they heard sounds that have a lower frequency similar to insect wing beats. When the higher frequency sounds were played, the spiders did not move. This suggests the higher frequencies may mimic the sounds of predators like birds.

University of Cincinnati spider behavioral ecologist George Uetz told Science that the results were a "surprise" that indicated science has much to learn about spiders as a whole. Because all spiders have these receptors on their legs, it is possible that all spiders can hear. This theory was first put forward by Walcott 60 years ago, but was dismissed at the time, according to the Cornell Chronicle. But studies of other spiders have turned up further evidence since. A 2016 study found that a kind of jumping spider can pick up sonic vibrations in the air.

"We don't know diddly about spiders," Uetz told Science. "They are much more complex than people ever thought they were."

Learning more provides scientists with an opportunity to study their sensory abilities in order to improve technology like bio-sensors, directional microphones and visual processing algorithms, Stafstrom told CNN.

Hoy agreed.

"The point is any understudied, underappreciated group has fascinating lives, even a yucky spider, and we can learn something from it," he told CNN.

Trending

There are many different CBD oil brands in today's market. But, figuring out which brand is the best and which brand has the strongest oil might feel challenging and confusing. Our simple guide to the strongest CBD oils will point you in the right direction.

Read More Show Less
Financial institutions in New York state will now have to consider the climate-related risks of their planning strategies. Ramy Majouji / WikiMedia Commons

By Brett Wilkins

Regulators in New York state announced Thursday that banks and other financial services companies are expected to plan and prepare for risks posed by the climate crisis.

Read More Show Less
The left image shows the OSIRIS-REx collector head hovering over the Sample Return Capsule (SRC) after the Touch-And-Go Sample Acquisition Mechanism arm moved it into the proper position for capture. The right image shows the collector head secured onto the capture ring in the SRC. NASA / Goddard / University of Arizona / Lockheed Martin

A NASA spacecraft has successfully collected a sample from the Bennu asteroid more than 200 million miles away from Earth. The samples were safely stored and will be preserved for scientists to study after the spacecraft drops them over the Utah desert in 2023, according to the Associated Press (AP).

Read More Show Less

Support Ecowatch