Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Global Toxic Emergency Created by the Electronics We Buy

Global Toxic Emergency Created by the Electronics We Buy

International Campaign for Responsible Technology

[Editor's note: While working on this post I kept thinking of the Annie Leonard's The Story of Electronics. Watch her movie below and then read about the organizations that are trying to clean up this toxic industry.]

The American Public Health Association (APHA) yesterday called on the global electronics’ industry, public health officials and international agencies to step up efforts to protect workers and communities, citing well documented adverse health effects caused by many toxic chemicals used in the manufacture of electronic and electrical products worldwide.

“The rapid growth of the electronics industry has been accompanied by massive increased use of toxic chemical substances and an increase in adverse health outcomes during manufacturing and end of life stages,” said Joe DiGangi, PhD, IPEN. “Manufacturers need to address this problem up front in the design phase by reducing and eliminating toxic chemicals.”

In making its recommendations, American Public Health Association (APHA) noted the dramatic increase in the production and use of electrical and electronic products, including a global supply chain that works through a complicated web of subcontractors, often located in Asia.

“Weak, or nonexistent regulations, lack of information about the chemicals to which they are being exposed, insufficient oversight, and a failure to consistently report and track disease patterns associated with the industry compound the problem in many Asian manufacturing facilities,” explained Dr. Jeong-ok Kong, an occupational health physician with the Korean Institute of Labor, Safety and Health in Korea who presented data indicating unusually high incidence of cancer among Samsung workers in Korea. “Unfortunately the response of the industry is often to continue the harm by exploiting scientific uncertainty and promoting weak policies under the guise of ‘sound science.’”

Several presentations at the APHA conference documented adverse health outcomes due to exposure to hazardous chemicals in the electronics industry in China, Korea, Malaysia, Indonesia and elsewhere. Some of the most important health impacts and patterns cited in the APHA resolution include cancers, lung disease, reproductive disorders, congenital anomalies in offspring and musculoskeletal problems from repetitive motion tasks. Companies named in the resolution included Acer, Advanced Micro Devices, Apple, Dell, AU Optronics, Hewlett Packard, Hon Hai (Foxconn), HTC, Intel, Lenovo, LG, Samsung, Taiwan Semiconductor Manufacturing Company and Young Fast Optoelectronics.

APHA endorsed three key strategies to strengthen occupational and environmental health in the electronics industry, including:

Right to know. The right of workers and communities to know the identities and hazards of chemicals they are being exposed to and ways to protect themselves is a key chemical safety principal.

Prevention through design. When the costs of chemical pollution, clean-up, and adverse health effects on individuals and communities are factored into product cost analyses, it becomes clear that the most effective way to address hazardous chemicals in manufacturing electronic products is to use safer chemical and non-chemical alternatives.

Health surveillance. APHA endorses the use of health surveillance that would include collection of data, analysis, and dissemination of information about injuries, illnesses, hazards and exposures in the electronics sector, with full access for workers to monitoring protocols and results, as well as medical records.

--------

Organizations involved in this campaign, include:

The American Public Health Association is the oldest and most diverse organization of public health professionals in the world and has been working to improve public health since 1872.

Asia Monitor Resource Center focuses on Asian labor concerns and supports a democratic and independent labor movement promoting the principles of labor rights, gender consciousness, and active workers’ participation in work-related issues.

Asian Network for the Rights of Occupational and Environmental Victims is a coalition of victims’ groups, trade unions and other labour groups across Asia, all committed to the rights of Victims and for overall improvement of health and safety at the workplace.

Center for Environmental Health protects people from toxic chemicals and promotes business products and practices that are safe for public health and the environment.

Electronics TakeBack Coalition promotes green design and responsible recycling in the electronics industry. A key goal is to require consumer electronics manufacturers and brand owners to take full responsibility for the life cycle of their products, through effective public policy requirements or enforceable agreements.

Hesperian Health Guides develops and distributes health materials that provide knowledge for action, and inspire action for health and are designed in partnership with and for community health workers and others in poor and marginalized communities around the world to prevent and cure disease, and to challenge the social injustices that cause poor health. www.hesperian.org

International Campaign for Responsible Technology connects activists and organizations around the world to make the electronics industry accountable and sustainable.

IPEN is a leading global organization working to establish and implement safe chemicals policies and practices that protect human health and the environment around the world. IPEN’s global network is comprised of more than 700 public-interest organizations in 116 countries working in the international policy arena and in developing countries.

Supporters for the Health and Rights of People in the Semiconductor Industry (SHARPS) is composed of independent labor unions, human right groups, occupational safety and health groups, progressive political parties, and workers’ organizations, supporting workers rights and occupational health, particularly in Samsung manufacturing facilities

Worksafe is dedicated to eliminating all types of workplace hazards and advocates for protective worker health and safety laws and effective remedies for injured workers. Worksafe watchdogs government agencies to ensure they enforce these laws.

 

A net-casting ogre-faced spider. CBG Photography Group, Centre for Biodiversity Genomics / CC BY-SA 3.0

Just in time for Halloween, scientists at Cornell University have published some frightening research, especially if you're an insect!

The ghoulishly named ogre-faced spider can "hear" with its legs and use that ability to catch insects flying behind it, the study published in Current Biology Thursday concluded.

"Spiders are sensitive to airborne sound," Cornell professor emeritus Dr. Charles Walcott, who was not involved with the study, told the Cornell Chronicle. "That's the big message really."

The net-casting, ogre-faced spider (Deinopis spinosa) has a unique hunting strategy, as study coauthor Cornell University postdoctoral researcher Jay Stafstrom explained in a video.

They hunt only at night using a special kind of web: an A-shaped frame made from non-sticky silk that supports a fuzzy rectangle that they hold with their front forelegs and use to trap prey.

They do this in two ways. In a maneuver called a "forward strike," they pounce down on prey moving beneath them on the ground. This is enabled by their large eyes — the biggest of any spider. These eyes give them 2,000 times the night vision that we have, Science explained.

But the spiders can also perform a move called the "backward strike," Stafstrom explained, in which they reach their legs behind them and catch insects flying through the air.

"So here comes a flying bug and somehow the spider gets information on the sound direction and its distance. The spiders time the 200-millisecond leap if the fly is within its capture zone – much like an over-the-shoulder catch. The spider gets its prey. They're accurate," coauthor Ronald Hoy, the D & D Joslovitz Merksamer Professor in the Department of Neurobiology and Behavior in the College of Arts and Sciences, told the Cornell Chronicle.

What the researchers wanted to understand was how the spiders could tell what was moving behind them when they have no ears.

It isn't a question of peripheral vision. In a 2016 study, the same team blindfolded the spiders and sent them out to hunt, Science explained. This prevented the spiders from making their forward strikes, but they were still able to catch prey using the backwards strike. The researchers thought the spiders were "hearing" their prey with the sensors on the tips of their legs. All spiders have these sensors, but scientists had previously thought they were only able to detect vibrations through surfaces, not sounds in the air.

To test how well the ogre-faced spiders could actually hear, the researchers conducted a two-part experiment.

First, they inserted electrodes into removed spider legs and into the brains of intact spiders. They put the spiders and the legs into a vibration-proof booth and played sounds from two meters (approximately 6.5 feet) away. The spiders and the legs responded to sounds from 100 hertz to 10,000 hertz.

Next, they played the five sounds that had triggered the biggest response to 25 spiders in the wild and 51 spiders in the lab. More than half the spiders did the "backward strike" move when they heard sounds that have a lower frequency similar to insect wing beats. When the higher frequency sounds were played, the spiders did not move. This suggests the higher frequencies may mimic the sounds of predators like birds.

University of Cincinnati spider behavioral ecologist George Uetz told Science that the results were a "surprise" that indicated science has much to learn about spiders as a whole. Because all spiders have these receptors on their legs, it is possible that all spiders can hear. This theory was first put forward by Walcott 60 years ago, but was dismissed at the time, according to the Cornell Chronicle. But studies of other spiders have turned up further evidence since. A 2016 study found that a kind of jumping spider can pick up sonic vibrations in the air.

"We don't know diddly about spiders," Uetz told Science. "They are much more complex than people ever thought they were."

Learning more provides scientists with an opportunity to study their sensory abilities in order to improve technology like bio-sensors, directional microphones and visual processing algorithms, Stafstrom told CNN.

Hoy agreed.

"The point is any understudied, underappreciated group has fascinating lives, even a yucky spider, and we can learn something from it," he told CNN.

EcoWatch Daily Newsletter

Financial institutions in New York state will now have to consider the climate-related risks of their planning strategies. Ramy Majouji / WikiMedia Commons

By Brett Wilkins

Regulators in New York state announced Thursday that banks and other financial services companies are expected to plan and prepare for risks posed by the climate crisis.

Read More Show Less

Trending

There are many different CBD oil brands in today's market. But, figuring out which brand is the best and which brand has the strongest oil might feel challenging and confusing. Our simple guide to the strongest CBD oils will point you in the right direction.

Read More Show Less
The left image shows the OSIRIS-REx collector head hovering over the Sample Return Capsule (SRC) after the Touch-And-Go Sample Acquisition Mechanism arm moved it into the proper position for capture. The right image shows the collector head secured onto the capture ring in the SRC. NASA / Goddard / University of Arizona / Lockheed Martin

A NASA spacecraft has successfully collected a sample from the Bennu asteroid more than 200 million miles away from Earth. The samples were safely stored and will be preserved for scientists to study after the spacecraft drops them over the Utah desert in 2023, according to the Associated Press (AP).

Read More Show Less
Exxon Mobil Refinery is seen from the top of the Louisiana State Capitol in Baton Rouge, Louisiana on March 5, 2017. WClarke / Wikimedia Commons / CC by 4.0

Exxon Mobil will lay off an estimated 14,000 workers, about 15% of its global workforce, including 1,900 workers in the U.S., the company announced Thursday.

Read More Show Less

Support Ecowatch