Quantcast

Climate Change Is Shrinking Winter Snowpack and Harming Northeast Forests Year-Round

A spruce-fir forest in New Hampshire on March 26, 2018. cappi thompson / CC BY 2.0

By Andrew Reinmann and Pamela Templer

Climate change often conjures up images of heat, drought and hurricanes. But according to the latest U.S. National Climate Assessment, released on Nov. 23, 2018, winters have warmed three times faster than summers in the Northeast in recent years. These changes are also producing significant effects.

Historically, more than 50 percent of the northern hemisphere has had snow cover in winter. Now warmer temperatures are reducing the depth and duration of winter snow cover. Many people assume that winter is a dormant time for organisms in cold climates, but decades of research now shows that winter climate conditions—particularly snowpack—are important regulators of the health of forest ecosystems and organisms that live in them.


In particular, our work over the last decade shows that declining snow cover may impair tree health and reduce forests' ability to filter air and water. Our latest study finds that continued winter warming could greatly reduce snow cover across the northeastern U.S., causing large declines in tree growth and forest carbon storage.

Changes in snowmelt-related streamflow timing for rivers, 1960-2014, show that snow is melting earlier in the year in the Northeast. USGCRP / NCA4

Snow as a Blanket

We study northern hardwood forests, which are dominated by sugar maple, yellow birch and American beech trees and span 85,000 square miles, from Minnesota and south-central Canada east to the Canadian Maritime Provinces and the northeastern U.S. These forests are famed for their vibrant fall colors. They generate revenue by drawing tourists, hikers, hunters and campers, and support timber and maple syrup industries. They also provide important ecological services, such as storing carbon and maintaining water and air quality.

When winter encroaches on this region, with temperatures often dipping well below freezing, every species needs insulation to cope. Tree roots and soil organisms like insects rely on deep snowpack for protection from cold—a literal blanket of snow. Even in sub-zero temperatures, if snow is sufficiently deep, soils can remain unfrozen.

Six decades of research from the Hubbard Brook Experimental Forest in New Hampshire—one of the longest-running studies anywhere—shows that winter snowpack is declining. Research conducted by other scholars indicates that if this trend continues, it will increase the likelihood of soil freeze-thaw cycles, with harmful effects on forest health.

How Acid Rain Transformed A Forest Into A Laboratory youtu.be

Why Northern Forests Need Snow

For more than 10 years we have manipulated winter snowpack at Hubbard Brook to study the effects of projected climate change on northern hardwood forests. In early winter, we head outdoors after each snowfall to remove snow from our experimental plots. Then we analyze how losing this insulating layer affects trees and soil.

We have found that in plots where we remove snow, frost penetrates a foot or more down into the soil, while it rarely extends more than two inches deep in nearby reference plots with unaltered snowpack. And just as freeze-thaw cycles create potholes in city streets, soil freezing abrades and kills tree roots and damages those that survive.

This root damage triggers a cascade of ecological responses. Dead roots decompose and stimulate losses of carbon dioxide from the soil. Trees take up fewer nutrients from soil, accumulate the toxic element aluminum in their leaves and produce less branch growth. Nitrogen, a key nutrient, can wash out of soils. Soil insect communities become less abundant and diverse.

Research plot at Hubbard Brook Experimental Forest with snowpack experimentally reduced Pam Templer, CC BY-ND

Declining Snowpack Affects Tree Growth

In our most recent paper, our climate and hydrological models show that the area of forests across the northeastern U.S. that receives insulating midwinter snowpack could decline by 95 percent by the year 2100. Today, 33,000 square miles of forests across northern New York and New England typically have snowpack for several months in winter. By the year 2100, this area could shrink to a patch smaller than 2,000 square miles—about one-fifth the size of Vermont.

This decline will undoubtedly harm the skiing and snowmobiling industries and expose Northeast roads to more freeze-thaw cycles. It also will significantly affect tree growth.

Historical and projected changes in spatial extent of insulating winter snowpack in the northeastern U.S. (left panels) and the distribution of sugar maple trees and forest area influenced by insulating winter snowpack (right panels)Reinmann et al., 2018, CC BY-ND

To assess the relationship between snowpack and tree growth, we used a specialized hollow drill bit called an increment borer to remove straw-sized wood cores from multiple sugar maple stems. Each of these trees experienced either natural winter snowpack or five consecutive years in which we removed early winter snowpack. When we sanded the cores and viewed them under a microscope, they revealed annual growth rings that we could use to understand how each tree responded to its environment.

Within just the first two years, our analyses showed a 40 percent decline in sugar maple growth from plots without snowpack. Growth rates remained depressed by 40 to 55 percent over the next three years. By contrast, there was no growth decline in the sugar maple trees in our reference plots where snow covered trees' roots in midwinter. These results are comparable to root mortality that other researchers observed in an earlier snow removal experiment at Hubbard Brook.

At Hubbard Brook, sugar maples can account for more than half of annual forest biomass accumulation. Consequently, changes in climate that reduce winter snowpack and increase soil freezing could reduce forest growth rates in the northern hardwood forest region by 20 percent just through their impacts on these trees. But we know that yellow birch also suffers root damage in response to soil freezing, so our estimate for changes in whole forest growth is likely to be low.

Removing a tree core with an increment borer Andrew Reinmann, CC BY-ND

Could warmer growing season temperatures compensate at least partially for this damage by stimulating rates of tree growth, as some research suggests? Very little work has been done to understand how forests in seasonally snow-covered regions will respond to interactive effects of climate change across seasons. To help fill this gap, we established the Climate Change Across Seasons Experiment at Hubbard Brook in 2013.

In this project we use buried heating cables to warm forest soils by 9 degrees Fahrenheit (5 degrees Celsius) during the snow-free season from April through November. In winter we use a combination of warming with buried heating cables and snow shoveling to induce soil freeze-thaw cycles. Our results so far show that root damage and reduced tree growth caused by winter soil freeze-thaw cycles are not offset by soil warming during the growing season.

Our work shows how often-overlooked changes in winter climate can impact forest ecosystems. Losing snowpack can reduce forest growth, carbon sequestration and nutrient retention, which will have important implications for climate change and air and water quality all year-round.

Andrew Reinmann is an assistant professor at CUNY Graduate Center. Pamela Templer is a professor at Boston University.

Disclosure statement: Andrew Reinmann receives funding from the U.S. Environmental Protection Agency. Pamela Templer has received funding from the National Science Foundation, National Oceanic and Atmospheric Administration, United States Department of Agriculture, and U.S. Geological Survey. She is on the governing board of the Ecological Society of America.

Reposted with permission from our media associate The Conversation.

Sponsored
by [D.Jiang] / Moment / Getty Images

By Alena Kharlamenko

Tofu is a staple in vegetarian and vegan diets.

Read More Show Less
KarinaKnyspel / iStock / Getty Images

2018 saw a number of studies pointing to the outsized climate impact of meat consumption. Beef has long been singled out as particularly unsustainable: Cows both release the greenhouse gas methane into the atmosphere because of their digestive processes and require a lot of land area to raise. But for those unwilling to give up the taste and texture of a steak or burger, could lab-grown meat be a climate-friendly alternative? In a first-of-its-kind study, researchers from the Oxford Martin School set out to answer that question.

Read More Show Less
Sponsored
Three scissor-tailed flycatcher fledglings in a mesquite tree in Texas. Texas Eagle / CC BY-NC 2.0

By Gary Paul Nabhan

President Trump has declared a national emergency to fund a wall along our nation's southern border. The border wall issue has bitterly divided people across the U.S., becoming a vivid symbol of political deadlock.

Read More Show Less
PeopleImages / E+ / Getty Images

By Daniel Ross

Hurricane Florence, which battered the U.S. East Coast last September, left a trail of ruin and destruction estimated to cost between $17 billion and $22 billion. Some of the damage was all too visible—smashed homes and livelihoods. But other damage was less so, like the long-term environmental impacts in North Carolina from hog waste that spilled out over large open-air lagoons saturated in the rains.

Hog waste can contain potentially dangerous pathogens, pharmaceuticals and chemicals. According to the state's Department of Environmental Quality, as of early October nearly 100 such lagoons were damaged, breached or were very close to being so, the effluent from which can seep into waterways and drinking water supplies.

Read More Show Less
This picture taken on May 21, 2018 shows discarded climbing equipment and rubbish scattered around Camp 4 of Mount Everest. Decades of commercial mountaineering have turned Mount Everest into the world's highest rubbish dump as an increasing number of big-spending climbers pay little attention to the ugly footprint they leave behind. DOMA SHERPA / AFP / Getty Images

China has closed its Everest base camp to tourists because of a buildup of trash on the world's tallest mountain.

Read More Show Less