Quantcast

Fish Are Losing Their Sense of Smell

Animals
Pexels

By Marlene Cimons

There have been numerous wake-up calls about the effects of climate change on marine life. As ocean waters heat up, they are bleaching corals. Growing levels of carbon dioxide are acidifying seawater, which is degrading the shells and skeletons of sea organisms. The rising temperatures are prompting fish to migrate to colder waters, even causing them to shrink.


Now climate change is starting to affect their sense of smell, a phenomenon that will worsen in the coming years if global warming continues unabated, according to new research. A sense of smell is indispensable to fish. They use it to find food, detect imminent danger and elude predators, to find safe environments and spawning areas, even to recognize one another.

To lose it could threaten their very survival. If this happens, it also would mean big trouble for the fishing industry, tourism and, most importantly, global nutrition, since many of the world's people—including its poorest—depend on fish for food.

Fishermen in Vietnam.Pexels

"Future levels of carbon dioxide can have large negative effects on the sense of smell of fish, which can affect fish population numbers and entire ecosystems," said Cosima Porteus, a researcher at the University of Exeter and author of the study, which appears in the journal Nature Climate Change.

"This can be prevented, but we must reduce carbon emissions now before it's too late."

Carbon dioxide combines with seawater to produce carbonic acid, which makes the water more acidic. Since the Industrial Revolution, oceanic CO2 has risen by 43 percent and is projected to be two and a half times current levels by the end of this century, according to the scientists.

Experts believe that about half of anthropogenic carbon dioxide—that is, emissions produced by human activities, such as the burning of fossils fuels—has over time ended up in the oceans, lowering the pH of seawater, and making it more acidic.

Porteus—collaborating with scientists from the Centre of Marine Sciences in Faro, Portugal and the Centre for Environment, Fisheries and Aquaculture Science in the UK—compared the behavior of juvenile sea bass at carbon dioxide levels typical of today's ocean conditions with those predicted for the end of the century.

The sea bass used in the study.Cosima Porteus / Nature Climate Change

They found that sea bass exposed to the more acidic conditions swam less and were less likely to react when encountering the smell of a predator, offered to them in the form of very dilute monkfish bile. Also, they were more likely to "freeze," a sign of anxiety, she said.

"I found the longer they were in high CO2, the worse they fared," she said. The scientists also measured the ability of the fish to detect certain odors in different levels of acidity by recording their nervous system activity.

"I recorded the olfactory—smell—nerve response by measuring the electrical activity of the nerve to these different odorants in the water that flowed over the nose of the fish in both normal and high CO2 seawater," Porteus said.

"The odorants tested were those that would be involved in finding food—amino acids—and in recognizing fish of the same or other species, including bile acids, bile, intestinal fluid, etc., at different concentrations, and at levels they would encounter in the wild," she added.

The researchers found that seawater acidified with levels of carbon dioxide that are expected by the end of the century—if global warming continues—reduced the sense of smell of sea bass by half, compared with today's levels.

"Their ability to detect and respond to some odors associated with food and threatening situations was more strongly affected than for other odors," Porteus said. "We think this is explained by acidified water affecting how odorant molecules bind to olfactory receptors in the fish's nose, reducing how well they can distinguish these important stimuli."

They did not compare the impact of today's ocean acidity levels with those of pre-industrial times, although they plan further research to do so. "It is possible that sea bass are already being affected by a rise in oceanic pH," she said.

Fresh catch at the fish market.Pixabay

The researchers also studied the impact of high levels of CO2 and acidity on genes expressed in the nose and brain of sea bass and found them altered—but not in a good way. Rather than adjust, things deteriorated, Porteus said.

"The gene expression experiment was conducted to see if these fish were able to compensate for their loss of sense of smell over a short period of time, not generations," she explained. "Animals have some ability to respond to a stressful condition by making more proteins or different proteins that work better under different conditions."

Researchers can determine this by looking at what genes change or are different between animals exposed to different conditions, normal and high CO2, for example, according to Porteus.

"One way to smell something better is to have more receptors detecting these smells in order to increase the chance that particular smell will be detected, and therefore increase the expression of these receptors," she said. "Another way is [for them] to make a slightly different receptor that works better under lower pH. However, we did not find any evidence this was the case."

Instead, they found the fish were making fewer such receptors, making it more difficult for them to detect smells, she said.

"There was a decrease in 'active' genes, indicating that these cells were less excitable, therefore responding even less to smells in the environment," she said. "This means that these fish had a reduced sense of smell and instead of compensating for this problem, the changes in their cells were making the problem worse. This matched our observations of their behavior."

The team chose to study European sea bass because they are an economically important species, both for food consumption and for sport fishing, Porteus said.

Nevertheless, "we think the ability to smell odors is similar in most, if not all, fish species, so what we have found for sea bass will almost certainly apply to all fish species, and maybe invertebrates too, such as crabs, lobsters etc.," she said. "So all the commercially important species are likely to be affected in a similar way, such as salmon, cod, plaice, turbot, haddock etc."

This is important because 20 percent of the protein consumed by 3 billion people comes from seafood, and about 50 percent of this comes from fish caught from the wild, according to Porteus. "Therefore, increases in carbon dioxide in the ocean have the potential to affect all fish species, including those that many people rely on for food and livelihood," she said.

EcoWatch Daily Newsletter

In this Oct. 7 handout photo from the Aracaju Municipal Press Office, workers are removing oil from Viral Beach, in Aracaju, Brazil. The spill has been polluting Brazil's beaches since early September. Aracaju Municipal Press Office / AP

More than 1,000 miles of shoreline in Brazil are now contaminated by a mysterious oil spill. that has lasted for weeks as the country struggles to clean what may be its largest oil spill in history.

Read More Show Less
Sunset with crepuscular rays over downtown Miami as seen from Miami Beach, Florida. Diana Robinson / Flickr / CC BY-NC-ND 2.0

Youth activists rallying in front of Miami Beach's City Hall successfully campaigned for the coastal city to declare a climate emergency, the Miami Herald reported.

Read More Show Less
Sponsored
Nitrogen dioxide and nitrogen oxides, the pollutants released by diesel vehicles are a major source of air pollution in London. Jack Taylor / Stringer / Getty Images

On days where air pollution is higher, hundreds of people across nine major cities in England are suffering from more potentially fatal cardiac arrests or heading to the hospital for strokes or severe asthma attacks, according to new research from King's College in London.

Read More Show Less
A diet high in fish and vegetables can help keep your gut healthy. Linda Raymond / E+ / Getty Images

By Heather Cruickshank

Trillions of bacteria and other microbes live in the human digestive system. Together, they form a community that's known as the gut microbiota.

Many bacteria in the microbiota play important roles in human health, helping to metabolize food, strengthen intestinal integrity and protect against disease.

Read More Show Less
The message of the global movement to ban fracking and get off fossil fuels envisions a different future, one that starts with cutting off pollution at the source. cta88 / iStock / Getty Images Plus

By Wenonah Hauter

Donald Trump's scheduled visit to a fracking industry gathering in Pittsburgh this week is a hugely symbolic moment for the 2020 election campaign, as well as the urgent battle to contain climate catastrophe.

Read More Show Less
Sponsored
Animals most targeted by the fur industry include minks, foxes and rabbits. Hal Trachtenberg / Flickr / CC BY-NC 2.0

Macy's announced Monday that it will stop selling fur by 2021, The New York Times reported.

Read More Show Less
A young fingerling Chinook salmon leaps out of the water at Pillar Point Harbor in Half Moon Bay, California on May 16, 2018. Justin Sullivan / Getty Images

The Trump administration is rolling back protections for endangered California fish species, a move long sought by a group of wealthy farmers that Interior Secretary David Bernhardt continued to lobby for months before he began working for the administration, The New York Times reported Tuesday.

Read More Show Less

By Gretchen Goldman

The Independent Particulate Matter Review Panel has released their consensus recommendations to the EPA administrator on the National Ambient Air Quality Standards for Particulate Matter. The group of 20 independent experts, that were disbanded by Administrator Wheeler last October and reconvened last week, hosted by the Union of Concerned Scientists, has now made clear that the current particulate pollution standards don't protect public health and welfare.

Read More Show Less