Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Drone Footage Captures Elusive Finless Porpoises in Hong Kong

Animals
Drone Footage Captures Elusive Finless Porpoises in Hong Kong
Two Indo-Pacific finless porpoises captured by a drone camera. Gary Stokes / OceansAsia

By Elizabeth Claire Alberts

Two silvery-white porpoises glide through the ocean, captured in the lens of a drone camera. The pair swim side by side, occasionally surfacing for a quick breath of air. After a few minutes, they're joined by several other porpoises, and the group travels together before disappearing into deeper waters.

This is the first drone video ever recorded of the rare and very elusive Indo-Pacific finless porpoise (Neophocaena phocaenoides) in Hong Kong, says Gary Stokes, director of Oceans Asia, a Hong Kong-based marine conservation group.


Rare footage of the finless porpoise of Hong Kong released

"I made it my personal holy grail to get footage of these porpoise as they are so hard to document and no one has anything decent," Stokes told Mongabay. "Everyone I spoke with working on them in Hong Kong has little to no images. The best pictures resemble a 'floating tire,' which is as best as you can really get if you are really lucky."

But Stokes said he got extremely lucky when he went out on his boat to search for them off the coast of South Lantau Island on May 2. "At one point I had 9 to 10 animals, which is said to be about as large a pod as they get, and very uncommon in Hong Kong," he said.

The finless porpoise is a small, bathtub-sized creature with a distinctive attribute: unlike many other cetaceans, it only has a small dorsal ridge on its back, rather than a proper dorsal fin. This trait gives the finless porpoise its name, and makes it very difficult to detect in the water.

A pair of finless porpoises off the coast of Hong Kong. Gary Stokes / OceansAsia

But there aren't many finless porpoises left in Hong Kong waters. In 2002, a group of researchers published a report that estimated there to be about 152 finless porpoises in the springtime, Hong Kong's peak season, and a total of 220 porpoises year round. A more recent report, published by the Agriculture, Fisheries and Conservation Department (AFCD) in Hong Kong, said there was a total of 269 finless porpoises in Hong Kong waters between 2018 and 2019, a slightly higher number. Thomas Jefferson, an author of the 2002 report, told Mongabay that he and a team of researchers would also be publishing a new report in a scientific journal later this year, estimating there to be 176 porpoises during the spring of 2019, which was "a very slight increase" from previous estimates.

The population may have risen moderately, but Teale Phelps Bondaroff, director of research at OceansAsia, says there are still serious concerns about the finless porpoise in Hong Kong based on the number of strandings, which seem to be increasing each year. In the last 14 years, at least 319 finless porpoises were stranded, according to data collected by the AFCD and Ocean Park Conservation Foundation Hong Kong (OPCFHK), which was published in a new report by OceansAsia. Last year is thought to be the deadliest year for the species, with 42 officially recorded strandings, although the report notes that at least one or two additional strandings weren't officially recorded. In 2020, there have already been 15 strandings as of May 16, according to OceansAsia.

"It's really alarming," Phelps Bondaroff, author of the new report, told Mongabay. "Biologists will say that if the annual mortality for a species is between 4 to 5%, that's unsustainable. Well, 42 or 43 porpoise is definitely much more than four to five percent of 220."

But these strandings are just the ones that are reported. Finless porpoises are frequently trapped and killed in fishing nets as bycatch, and fishermen may not disclose these casualties to the authorities, Phelps Bondaroff said.

"The law basically says that it's illegal to be in possession of a protected animal … and these porpoises are protected animals in Hong Kong," he said. "But the problem is that if you accidentally get one entangled in your net, you have the burden to prove that you didn't intentionally catch it. And that's very difficult for fishers to do. It's a lot of paperwork, there's bureaucracy involved, and it's sometimes, much easier to simply dump the porpoise over and continue on."

Besides fishing net entanglement, finless porpoises are also threatened by ship strikes, noise pollution, and plastic pollution. However, when a porpoise is found stranded, the cause of death isn't always clear based on the necropsies conducted by the OPCFHK, Phelps Bondaroff said.

"Not all necropsies are as detailed as they could be," he said. "Some of them are comprehensive with a CT scan … but others are cursory and done in the field, and the problem is that you don't have consistent data."

OceansAsia makes several recommendations in its report to help conserve the species. First, it suggests that another comprehensive finless porpoise survey be conducted, which will help determine how vulnerable the population is. Second, it proposes making the southwest coast of Lamma Island in Hong Kong, which is prime habitat for finless porpoises, a marine park. Third, it recommends a better system for stranding reporting and comprehensive analysis, a fisheries observation program, and a revision of the Wild Animals Protection Ordinance so fishermen are more likely to report accidental strandings.

The finless porpoise doesn't just live in the coastal waters of Hong Kong, but ranges across Southeast Asia, India, and even the Middle East. Like Hong Kong, some local populations are evaluated to be quite low. For instance, one study estimates that about 135 finless porpoises live off the coast of Sarawak, Malaysia. However, John Wang, co-author of the Red List assessments for the IUCN, says that other areas may boast "pretty decent densities [of the finless purpose] relative to other species."

"Most of the time, the 'rareness' is a misconception because most people won't see finless porpoises even if they swim right by them," Wang told Mongabay in an email. "So, no doubt they are dying in probably high numbers wherever gillnet fishing also occur, they are also probably reproducing quite quickly (being a porpoise) but we have no idea how many there are out there."

The finless porpoise is currently listed as vulnerable by the IUCN, which means the species faces a high threat of extinction but is not considered endangered. Yet, there would be variances across the species' distribution, according to Randall Reeves, who also acts as chair of the IUCN Species Survival Commission's Cetacean Specialist Group.

"[I]t's important to bear in mind that an assessment of the species, and especially when the species' distribution is as extensive (and under-surveyed) as is the case for Neophocaena phocaenoides, must not be interpreted to mean that some, even many, local populations are not Endangered, Critically Endangered, or even Extirpated," Reeves told Mongabay in an email. "In fact, we tried to make this point explicitly in the Justification portion of the assessment."

CORRECTION (06/09/2020): A previous version of this article stated that John Wang was a co-chair of the IUCN Species Survival Commission's Cetacean Specialist Group, but this was corrected to say that he is a co-author of the Red List assessments for the IUCN.

Reposted with permission from Mongabay.

EcoWatch Daily Newsletter

A bald eagle flies over Lake Michigan. KURJANPHOTO / iStock / Getty Images Plus

A Michigan bald eagle proved that nature can still triumph over machines when it attacked and drowned a nearly $1,000 government drone.

Read More Show Less
The peloton ride passes through fire-ravaged Fox Creek Road in Adelaide Hills, South Australia, during the Tour Down Under cycling event on January 23, 2020. Brenton Edwards / AFP / Getty Images

A professional cycling race in Australia is under attack for its connections to a major oil and gas producer, the Guardian reports.

Read More Show Less
UQ study lead Francisca Ribeiro inspects oysters. The study of five different seafoods revealed plastic in every sample. University of Queensland

A new study of five different kinds of seafood revealed traces of plastic in every sample tested.

Read More Show Less
Cottongrass blows in the wind at the edge of Etivlik Lake, Alaska. Western Arctic National Parklands / Wikimedia Commons / CC by 2.0

By Tara Lohan

Warming temperatures on land and in the water are already forcing many species to seek out more hospitable environments. Atlantic mackerel are swimming farther north; mountain-dwelling pikas are moving upslope; some migratory birds are altering the timing of their flights.

Numerous studies have tracked these shifting ranges, looked at the importance of wildlife corridors to protect these migrations, and identified climate refugia where some species may find a safer climatic haven.

"There's a huge amount of scientific literature about where species will have to move as the climate warms," says U.C. Berkeley biogeographer Matthew Kling. "But there hasn't been much work in terms of actually thinking about how they're going to get there — at least not when it comes to wind-dispersed plants."

Kling and David Ackerly, professor and dean of the College of Natural Resources at U.C. Berkeley, have taken a stab at filling this knowledge gap. Their recent study, published in Nature Climate Change, looks at the vulnerability of wind-dispersed species to climate change.

It's an important field of research, because while a fish can more easily swim toward colder waters, a tree may find its wind-blown seeds landing in places and conditions where they're not adapted to grow.

Kling is careful to point out that the researchers weren't asking how climate change was going to change wind; other research suggests there likely won't be big shifts in global wind patterns.

Instead the study involved exploring those wind patterns — including direction, speed and variability — across the globe. The wind data was then integrated with data on climate variation to build models trying to predict vulnerability patterns showing where wind may either help or hinder biodiversity from responding to climate change.

One of the study's findings was that wind-dispersed or wind-pollinated trees in the tropics and on the windward sides of mountain ranges are more likely to be vulnerable, since the wind isn't likely to move those dispersers in the right direction for a climate-friendly environment.

The researchers also looked specifically at lodgepole pines, a species that's both wind-dispersed and wind-pollinated.

They found that populations of lodgepole pines that already grow along the warmer and drier edges of the species' current range could very well be under threat due to rising temperatures and related climate alterations.

"As temperature increases, we need to think about how the genes that are evolved to tolerate drought and heat are going to get to the portions of the species' range that are going to be getting drier and hotter," says Kling. "So that's what we were able to take a stab at predicting and estimating with these wind models — which populations are mostly likely to receive those beneficial genes in the future."

That's important, he says, because wind-dispersed species like pines, willows and poplars are often keystone species whole ecosystems depend upon — especially in temperate and boreal forests.

And there are even more plants that rely on pollen dispersal by wind.

"That's going to be important for moving genes from the warmer parts of a species' range to the cooler parts of the species' range," he says. "This is not just about species' ranges shifting, but also genetic changes within species."

Kling says this line of research is just beginning, and much more needs to be done to test these models in the field. But there could be important conservation-related benefits to that work.

"All these species and genes need to migrate long distances and we can be thinking more about habitat connectivity and the vulnerability of these systems," he says.

The more we learn, the more we may be able to do to help species adapt.

"The idea is that there will be some landscapes where the wind is likely to help these systems naturally adapt to climate change without much intervention, and other places where land managers might really need to intervene," he says. "That could involve using assisted migration or assisted gene flow to actually get in there, moving seeds or planting trees to help them keep up with rapid climate change."


Tara Lohan is deputy editor of The Revelator and has worked for more than a decade as a digital editor and environmental journalist focused on the intersections of energy, water and climate. Her work has been published by The Nation, American Prospect, High Country News, Grist, Pacific Standard and others. She is the editor of two books on the global water crisis. http://twitter.com/TaraLohan

Reposted with permission from The Revelator.

An illustration depicts the extinct woolly rhino. Heinrich Harder / Wikimedia Commons

The last Ice Age eliminated some giant mammals, like the woolly rhino. Conventional thinking initially attributed their extinction to hunting. While overhunting may have contributed, a new study pinpointed a different reason for the woolly rhinos' extinction: climate change.

The last of the woolly rhinos went extinct in Siberia nearly 14,000 years ago, just when the Earth's climate began changing from its frozen conditions to something warmer, wetter and less favorable to the large land mammal. DNA tests conducted by scientists on 14 well-preserved rhinos point to rapid warming as the culprit, CNN reported.

"Humans are well known to alter their environment and so the assumption is that if it was a large animal it would have been useful to people as food and that must have caused its demise," says Edana Lord, a graduate student at the Center for Paleogenetics in Stockholm, Sweden, and co-first author of the paper, Smithsonian Magazine reported. "But our findings highlight the role of rapid climate change in the woolly rhino's extinction."

The study, published in Current Biology, notes that the rhino population stayed fairly consistent for tens of thousands of years until 18,500 years ago. That means that people and rhinos lived together in Northern Siberia for roughly 13,000 years before rhinos went extinct, Science News reported.

The findings are an ominous harbinger for large species during the current climate crisis. As EcoWatch reported, nearly 1,000 species are expected to go extinct within the next 100 years due to their inability to adapt to a rapidly changing climate. Tigers, eagles and rhinos are especially vulnerable.

The difference between now and the phenomenon 14,000 years ago is that human activity is directly responsible for the current climate crisis.

To figure out the cause of the woolly rhinos' extinction, scientists examined DNA from different rhinos across Siberia. The tissue, bone and hair samples allowed them to deduce the population size and diversity for tens of thousands of years prior to extinction, CNN reported.

Researchers spent years exploring the Siberian permafrost to find enough samples. Then they had to look for pristine genetic material, Smithsonian Magazine reported.

It turns out the wooly rhinos actually thrived as they lived alongside humans.

"It was initially thought that humans appeared in northeastern Siberia fourteen or fifteen thousand years ago, around when the woolly rhinoceros went extinct. But recently, there have been several discoveries of much older human occupation sites, the most famous of which is around thirty thousand years old," senior author Love Dalén, a professor of evolutionary genetics at the Center for Paleogenetics, said in a press release.

"This paper shows that woolly rhino coexisted with people for millennia without any significant impact on their population," Grant Zazula, a paleontologist for Canada's Yukon territory and Simon Fraser University who was not involved in the research, told Smithsonian Magazine. "Then all of a sudden the climate changed and they went extinct."

A large patch of leaked oil and the vessel MV Wakashio near Blue Bay Marine Park off the coast of southeast Mauritius on Aug. 6, 2020. AFP via Getty Images

The environmental disaster that Mauritius is facing is starting to appear as its pristine waters turn black, its fish wash up dead, and its sea birds are unable to take flight, as they are limp under the weight of the fuel covering them. For all the damage to the centuries-old coral that surrounds the tiny island nation in the Indian Ocean, scientists are realizing that the damage could have been much worse and there are broad lessons for the shipping industry, according to Al Jazeera.

Read More Show Less

Trending

A quality engineer examines new solar panels in a factory. alvarez / Getty Images

Transitioning to renewable energy can help reduce global warming, and Jennie Stephens of Northeastern University says it can also drive social change.

For example, she says that locally owned businesses can lead the local clean energy economy and create new jobs in underserved communities.

"We really need to think about … connecting climate and energy with other issues that people wake up every day really worried about," she says, "whether it be jobs, housing, transportation, health and well-being."

To maximize that potential, she says the energy sector must have more women and people of color in positions of influence. Research shows that leadership in the solar industry, for example, is currently dominated by white men.

"I think that a more inclusive, diverse leadership is essential to be able to effectively make these connections," Stephens says. "Diversity is not just about who people are and their identity, but the ideas and the priorities and the approaches and the lens that they bring to the world."

So she says by elevating diverse voices, organizations can better connect the climate benefits of clean energy with social and economic transformation.

Reposted with permission from Yale Climate Connections.