Quantcast
Environmental News for a Healthier Planet and Life

E-Waste Management Is Not Keeping Pace With Consumer Electronics

Climate
E-Waste Management Is Not Keeping Pace With Consumer Electronics
The U.S. exports up to 40% of its e-waste, with some going to places like Southeast Asia that have little environmental oversight. EyesWideOpen / Getty Images

By Callie Babbitt and Shahana Althaf

It's hard to imagine navigating modern life without a mobile phone in hand. Computers, tablets and smartphones have transformed how we communicate, work, learn, share news and entertain ourselves. They became even more essential when the COVID-19 pandemic moved classes, meetings and social connections online.


But few people realize that our reliance on electronics comes with steep environmental costs, from mining minerals to disposing of used devices. Consumers can't resist faster products with more storage and better cameras, but constant upgrades have created a growing global waste challenge. In 2019 alone, people discarded 53 million metric tons of electronic waste.

In our work as sustainability researchers, we study how consumer behavior and technological innovations influence the products that people buy, how long they keep them and how these items are reused or recycled.

Our research shows that while e-waste is rising globally, it's declining in the U.S. But some innovations that are slimming down the e-waste stream are also making products harder to repair and recycle.

Recycling Used Electronics

Thirty years of data show why the volume of e-waste in the U.S. is decreasing. New products are lighter and more compact than past offerings. Smartphones and laptops have edged out desktop computers. Televisions with thin, flat screens have displaced bulkier cathode-ray tubes, and streaming services are doing the job that once required standalone MP3, DVD and Blu-ray players. U.S. households now produce about 10% less electronic waste by weight than they did at their peak in 2015.

The bad news is that only about 35% of U.S. e-waste is recycled. Consumers often don't know where to recycle discarded products. If electronic devices decompose in landfills, hazardous compounds can leach into groundwater, including lead used in older circuit boards, mercury found in early LCD screens and flame retardants in plastics. This process poses health risks to people and wildlife.

There's a clear need to recycle e-waste, both to protect public health and to recover valuable metals. Electronics contain rare minerals and precious metals mined in socially and ecologically vulnerable parts of the world. Reuse and recycling can reduce demand for "conflict minerals" and create new jobs and revenue streams.

But it's not a simple process. Disassembling electronics for repair or material recovery is expensive and labor-intensive.

Some recycling companies have illegally stockpiled or abandoned e-waste. One Denver warehouse was called "an environmental disaster" when 8,000 tons of lead-filled tubes from old TVs were discovered there in 2013.

The U.S. exports up to 40% of its e-waste. Some goes to regions such as Southeast Asia that have little environmental oversight and few measures to protect workers who repair or recycle electronics.

Disassembling Products and Assembling Data

Health and environmental risks have prompted 25 U.S. states and the District of Columbia to enact e-waste recycling laws. Some of these measures ban landfilling electronics, while others require manufacturers to support recycling efforts. All of them target large products, like old cathode-ray tube TVs, which contain up to 4 pounds of lead.

We wanted to know whether these laws, adopted from 2003 to 2011, can keep up with the current generation of electronic products. To find out, we needed a better estimate of how much e-waste the U.S. now produces.

We mapped sales of electronic products from the 1950s to the present, using data from industry reports, government sources and consumer surveys. Then we disassembled almost 100 devices, from obsolete VCRs to today's smartphones and fitness trackers, to weigh and measure the materials they contained.

A researcher takes apart a smartphone to find out what materials are inside. Shahana Althaf, CC BY

This dissected tablet shows the components inside, each of which were logged, weighed and measured by researchers. Callie Babbitt, CC BY

We created a computer model to analyze the data, producing one of the most detailed accounts of U.S. electronic product consumption and discards currently available.

E-waste Is Leaner, But Not Necessarily Greener

The big surprise from our research was that U.S. households are producing less e-waste, thanks to compact product designs and digital innovation. For example, a smartphone serves as an all-in-one phone, camera, MP3 player and portable navigation system. Flat-panel TVs are about 50% lighter than large-tube TVs and don't contain any lead.

But not all innovations have been beneficial. To make lightweight products, manufacturers miniaturized components and glued parts together, making it harder to repair devices and more expensive to recycle them. Lithium-ion batteries pose another problem: They are hard to detect and remove, and they can spark disastrous fires during transportation or recycling.

Popular features that consumers love – speed, sharp images, responsive touch screens and long battery life – rely on metals like cobalt, indium and rare-earth elements that require immense energy and expense to mine. Commercial recycling technology cannot yet recover them profitably, although innovations are starting to emerge.

Re-envisioning Waste as a Resource

We believe solving these challenges requires a proactive approach that treats digital discards as resources, not waste. Gold, silver, palladium and other valuable materials are now more concentrated in e-waste than in natural ores in the ground.

"Urban mining," in the form of recycling e-waste, could replace the need to dig up scarce metals, reducing environmental damage. It would also reduce U.S. dependence on minerals imported from other countries.

Concentration of hazardous (left) and valuable (right) materials within the U.S. e-waste stream. Althaf et al. 2020

Government, industry and consumers all have roles to play. Progress will require designing products that are easier to repair and reuse, and persuading consumers to keep their devices longer.

We also see a need for responsive e-waste laws in place of today's dated patchwork of state regulations. Establishing convenient, certified recycling locations can keep more electronics out of landfills. With retooled operations, recyclers can recover more valuable materials from the e-waste stream. Steps like these can help balance our reliance on electronic devices with systems that better protect human health and the environment.

Callie Babbitt is an Associate Professor of Sustainability, Rochester Institute of Technology.

Shahana Althaf is a Postdoctoral associate, Yale University.

Disclosure statement: Callie Babbitt receives funding from the National Science Foundation, the Consumer Technology Association, and the Staples Sustainable Innovation Lab. Shahana Althaf received funding from the National Science Foundation, the Consumer Technology Association, and the Staples Sustainable Innovation Lab.

Reposted with permission from The Conversation.

Rise and Resist activist group marched together to demand climate and racial justice. Steve Sanchez / Pacific Press / LightRocket / Getty Images

By Alexandria Villaseñor

This story is part of Covering Climate Now, a global journalism collaboration strengthening coverage of the climate story.

My journey to becoming an activist began in late 2018. During a trip to California to visit family, the Camp Fire broke out. At the time, it was the most devastating and destructive wildfire in California history. Thousands of acres and structures burned, and many lives were lost. Since then, California's wildfires have accelerated: This past year, we saw the first-ever "gigafire," and by the end of 2020, more than four million acres had burned.

Read More Show Less
EcoWatch Daily Newsletter
U.S. Interior Secretary Deb Haaland announced a pair of climate-related secretarial orders on Friday, April 16. U.S. Department of the Interior

By Jessica Corbett

As the Biden administration reviews the U.S. government's federal fossil fuels program and faces pressure to block any new dirty energy development, Interior Secretary Deb Haaland won praise from environmentalists on Friday for issuing a pair of climate-related secretarial orders.

Read More Show Less
Trending
David Attenborough narrates "The Year Earth Changed," premiering globally April 16 on Apple TV+. Apple

Next week marks the second Earth Day of the coronavirus pandemic. While a year of lockdowns and travel restrictions has limited our ability to explore the natural world and gather with others for its defense, it is still possible to experience the wonder and inspiration from the safety of your home.

Read More Show Less

By Michael Svoboda

For April's bookshelf we take a cue from Earth Day and step back to look at the bigger picture. It wasn't climate change that motivated people to attend the teach-ins and protests that marked that first observance in 1970; it was pollution, the destruction of wild lands and habitats, and the consequent deaths of species.

Read More Show Less
An Amazon.com Inc. worker walks past a row of vans outside a distribution facility on Feb. 2, 2021 in Hawthorne, California. PATRICK T. FALLON / AFP via Getty Images

Over the past year, Amazon has significantly expanded its warehouses in Southern California, employing residents in communities that have suffered from high unemployment rates, The Guardian reports. But a new report shows the negative environmental impacts of the boom, highlighting its impact on low-income communities of color across Southern California.

Read More Show Less