Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Energy Efficient Process Discovered to Turn Seawater into Freshwater

Energy Efficient Process Discovered to Turn Seawater into Freshwater

By Nathan August

Seawater desalination with nothing more than a small electrical field? A simple new method of creating freshwater from seawater—that uses far less energy than conventional methods do—has just been developed by researchers at the University of Texas at Austin and the University of Marburg in Germany.


A prototype "water chip" developed by researchers at The University of Texas at Austin in collaboration with a startup company. Photo Credit: University of Texas at Austin

The new method—electrochemically mediated seawater desalination—uses no membranes, is considerably simpler than conventional methods, and is so low-energy that it can be performed with the energy provided by store-bought batteries. Those are big improvements on all fronts—if the process can be adequately scaled up, it's a potentially revolutionary development. Freshwater scarcity is expected to become a significant problem in many regions of the world in the coming decades, but as it stands now, saltwater desalination isn't particularly economical ... A cheaper, simpler method than those currently available would be of great use—one which could be used on larger scales than simple solar stills are.

The new method/technology is patent-pending and is currently in commercial development by startup company Okeanos Technologies.

“The availability of water for drinking and crop irrigation is one of the most basic requirements for maintaining and improving human health," said Richard Crooks of The University of Texas at Austin. “Seawater desalination is one way to address this need, but most current methods for desalinating water rely on expensive and easily contaminated membranes. The membrane-free method we've developed still needs to be refined and scaled up, but if we can succeed at that, then one day it might be possible to provide fresh water on a massive scale using a simple, even portable, system."

The researchers think that the new method could be of particular use to those in the world's poorer, more water-stressed regions—more than a third of the world's people live in such regions. While lacking in freshwater, the majority of these regions have access to vast seawater resources, just not an economical means to desalinate it.

“People are dying because of a lack of freshwater," said Tony Frudakis, founder and CEO of Okeanos Technologies. “And they'll continue to do so until there is some kind of breakthrough, and that is what we are hoping our technology will represent."

The University of Texas at Austin explains the method:

To achieve desalination, the researchers apply a small voltage (3.0 volts) to a plastic chip filled with seawater. The chip contains a microchannel with two branches. At the junction of the channel an embedded electrode neutralizes some of the chloride ions in seawater to create an “ion depletion zone" that increases the local electric field compared with the rest of the channel. This change in the electric field is sufficient to redirect salts into one branch, allowing desalinated water to pass through the other branch.

“The neutralization reaction occurring at the electrode is key to removing the salts in seawater," stated Kyle Knust, a graduate student and co-author on the new research paper.

“Like a troll at the foot of the bridge, the ion depletion zone prevents salt from passing through, resulting in the production of freshwater."

As of now, the best that the researchers have achieved is 25 percent desalination—drinking water requires 99 percent desalination. The researchers are confident, though, that the 99 percent goal is very achievable.

“This was a proof of principle," stated Knust. “We've made comparable performance improvements while developing other applications based on the formation of an ion depletion zone. That suggests that 99 percent desalination is not beyond our reach."

The process will also need to be scaled up—as of right now, the microchannels are about the size of a human hair, and produce about 40 nanoliters of desalted water per minute. In order for the technology to be of practical use, a device would have to produce several liters—at least—of water per day.

The researchers are confident that this can be achieved, creating “a future in which the technology is deployed at different scales to meet different needs."

“You could build a disaster relief array or a municipal-scale unit," said Frudakis. “Okeanos has even contemplated building a small system that would look like a Coke machine and would operate in a standalone fashion to produce enough water for a small village."

The new research was just published in the journal Angewandte Chemie.

Visit EcoWatch's WATER page for more related news on this topic.

——–

SIGN THIS PETITION TODAY:

Coast Guard members work to clean an oil spill impacting Delaware beaches. U.S. Coast Guard District 5

Environmental officials and members of the U.S. Coast Guard are racing to clean up a mysterious oil spill that has spread to 11 miles of Delaware coastline.

Read More Show Less

EcoWatch Daily Newsletter

What happened to all that plastic you've put in the recycling bin over the years? Halfpoint / Getty Images

By Dr. Kate Raynes-Goldie

Of all the plastic we've ever produced, only 9% has been recycled. So what happened to all that plastic you've put in the recycling bin over the years?

Read More Show Less

Trending

Plain Naturals offers a wide variety of CBD products including oils, creams and gummies.

Plain Naturals is making waves in the CBD space with a new product line for retail customers looking for high potency CBD products at industry-low prices.

Read More Show Less
Donald Trump and Joe Biden arrive onstage for the final presidential debate at Belmont University in Nashville, Tennessee, on Oct. 22, 2020. JIM WATSON / AFP via Getty Images

Towards the end of the final presidential debate of the 2020 election season, the moderator asked both candidates how they would address both the climate crisis and job growth, leading to a nearly 12-minute discussion where Donald Trump did not acknowledge that the climate is changing and Joe Biden called the climate crisis an existential threat.

Read More Show Less
What will happen to all these batteries once they wear out? Ronny Hartmann / AFP / Getty Images

By Zheng Chen and Darren H. S. Tan

As concern mounts over the impacts of climate change, many experts are calling for greater use of electricity as a substitute for fossil fuels. Powered by advancements in battery technology, the number of plug-in hybrid and electric vehicles on U.S. roads is increasing. And utilities are generating a growing share of their power from renewable fuels, supported by large-scale battery storage systems.

Read More Show Less

Support Ecowatch