Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Elon Musk Gives Indian Prime Minister Tour of Tesla Factory, Talks Battery Storage and Solar

Business
Elon Musk Gives Indian Prime Minister Tour of Tesla Factory, Talks Battery Storage and Solar

Indian Prime Minister Narendra Modi recently met Tesla Motors CEO Elon Musk to discuss the implications of the Tesla Powerwall—the company’s battery energy storage technology—for India.

It was a simple official visit and as per media reports, there was no talk of Tesla setting up manufacturing facilities in India. The company, however, stated earlier that India could be “one of the potential markets in Asia to have a local assembly plant” if the government moves towards a pro-electric vehicle policy.

If and when that happens, the real opportunity for India here is to leapfrog the conventional grid and move straight to distributed generation (and consumption) of power, something similar to what happened in the telecom sector where most of the country got connected via mobile telephony, without having to go through the landline model.

But the important thing which the visit did achieve was to start discussions on Powerwall usage in India. As a proof, you can look at the comments from those discussing the (un)economics of the battery and spammers trying to drive some traffic to their sites. Even at its launch, the Powerwall was discussed in the niche forums in India quite extensively.

At both times, the battery got dismissed outright as “a too costly to consider” solution.

I have one small issue (and one big rant) with these (as I call them) pseudo-economic-experts. The problem with their discourse is that, to use an idiom, they miss the forest for the trees. They have no idea of the future and certainly no understanding of how technology pricing works.

At least for us in the cleantech space, this has become a regular (boring) cycle now.

Think of any new development—and all these people want to talk about is its cost right now. If the current costs are high (which, unsurprisingly, they are), the product/technology gets labeled as just another toy for rich green people.

Don’t get me wrong—the cost is a very important issue. But it is insane to dismiss the whole idea as forever infeasible.

World’s first hard drive with a mighty 5 MB storage. Photo credit: Wired

My personal favorite anecdotes to counter these "experts" is to talk about cost disruptions in (quite obviously) solar PV and memory storage devices. Another famous quote to pull off at times like these is what Thomas Watson (CEO of IBM) allegedly said in 1943—“I think there is a world market for maybe five computers.”

I believe that to reject a technology by focusing only on its current cost rather than its future potential creates an artificial barrier for the technology. This is especially harmful for the cleantech industry, as it pushes the affordability tipping point by reducing the number of early adopters (what I mean).

If it were left to me, I would classify this group in the same basket as oil companies trying to hide climate change data or their friends soft selling cigarettes by asking the wrong questions.

Similar is the case with rooftop solar. Even though it generally makes complete economic sense to go solar, ordinary folks get biased due to the confusion created by passing remarks from pseudo experts. This reduces the number of people who want to make the jump, starves the market, banks hesitate from financing such projects/products and from there onwards you can figure out the vicious cycle yourself.

Read page 1

Now, let’s get to the non-rant part of this post.

Why exactly are batteries (this post only talks about lithium-ion batteries) so expensive? The answer for the major part is simply due to the scale of deployment.

While solar PV has reached 200 GW of installed capacity, batteries are still taking baby steps at best. The graph below compares the rate of deployment with falling costs for the two technologies (source).

Experience curve of PV vs. that of Li-ion batteries. Photo credit: BNEF

In spite of this, a product like the Tesla Powerwall, though expensive at its current cost for the U.S. (save probably Hawaii), would be welcomed with open arms in Germany and Australia. Check this Wikipedia page to figure out other probable countries. The former two are important, though, because of their solar installations.

As this excellent (though a little dated) presentation from Roland Berger explains, the main costs are associated with the high cost of raw materials and materials processing as well as the costs of the cell, packaging and manufacturing. Raw materials and processing alone account for around 40 percent of cell costs and have huge potential for cost reduction.

Quite interestingly, the presentation published back in 2011 expected Li-ion battery prices to fall to $250/kWh by 2020. An article on MIT Entrepreneur Review, during the same period, holds a similar viewpoint:

"With the right battery chemistry, it’s feasible for costs to go as low as $300/kWh for lithium iron phosphate or lithium manganese oxide cells. That’s in the best of scenarios."

But if you have been paying attention, we are already there. These industrial-scale batteries will cost $250 per kWh of storage capacity—five years ahead of the schedule.

An article published in Nature backs up these claims (paywall). Björn Nykvist & Måns Nilsson (Stockholm Environment Institute) show that industry-wide cost estimates declined by approximately 14 percent annually between 2007 and 2014, from above $1,000 per kWh to around $410 per kWh. The cost of battery packs used by market-leading battery electric vehicle (EV) manufacturers is even lower, at $300 per kWh.

Winfried Hoffman at the consulting firm ASE agrees. In an interview with PV Magazine last yearhe put it quite bluntly that battery storage costs will fall considerably faster that most experts are currently projecting. The interview post goes on to say:

"If the battery has 80 percent usable capacity and holds 5,000 cycles, the cost of stored electricity in this evaluation will fall from €0.20/kWh ($0.25) in 2012 to €0.05/kWh ($0.06) in 2030. Should the solar power generation costs fall to €0.05-€0.10/kWh, electricity costs that are more than competitive with the cost of household electricity will result."

The cost of solar PV is expected to fall about 40 percent over the next two years. With battery costs plummeting similarly, the next round of solar rush is set to witness a wave of a lifetime. And countries like India are waiting impatiently.

How can you help? Don’t be myopic. Don’t push the future further away.

YOU MIGHT ALSO LIKE

Tesla CEO Elon Musk: VW Scandal Shows Time’s Up for Fossil Fuels

7 Signs Renewable Energy Is Here to Stay

10 Greenest Cities in the World

The Volkswagen Scandal: We Have Been Here Before

EcoWatch Daily Newsletter

A resident works in the vegetable garden of the Favela Nova Esperanca – a "green favela" which reuses everything and is subject to the ethics of permaculture – in the outskirts of Sao Paulo, Brazil, on Feb. 14, 2020. NELSON ALMEIDA / AFP via Getty Images

Farmers are the stewards of our planet's precious soil, one of the least understood and untapped defenses against climate change. Because of its massive potential to store carbon and foundational role in growing our food supply, soil makes farming a solution for both climate change and food security.

Read More Show Less
Once the virus escapes into the air inside a building, you have two options: bring in fresh air from outside or remove the virus from the air inside the building. Halfpoint Images / Getty Images

By Shelly Miller

The vast majority of SARS-CoV-2 transmission occurs indoors, most of it from the inhalation of airborne particles that contain the coronavirus. The best way to prevent the virus from spreading in a home or business would be to simply keep infected people away. But this is hard to do when an estimated 40% of cases are asymptomatic and asymptomatic people can still spread the coronavirus to others.

Read More Show Less
California Senator Kamala Harris endorses Democratic presidential candidate Joe Biden at a campaign rally at Renaissance High School in Detroit, Michigan on March 9, 2020. JEFF KOWALSKY / AFP via Getty Images

Former Vice President Joe Biden made a historic announcement Tuesday when he named California Senator Kamala Harris as his running mate in the 2020 presidential election.

Read More Show Less
An aerial view taken on August 8, 2020 shows a large patch of leaked oil from the MV Wakashio off the coast of Mauritius. STRINGER / AFP / Getty Images

The tiny island nation of Mauritius, known for its turquoise waters, vibrant corals and diverse ecosystem, is in the midst of an environmental catastrophe after a Japanese cargo ship struck a reef off the country's coast two weeks ago. That ship, which is still intact, has since leaked more than 1,000 metric tons of oil into the Indian Ocean. Now, a greater threat looms, as a growing crack in the ship's hull might cause the ship to split in two and release the rest of the ship's oil into the water, NPR reported.

On Friday, Prime Minister Pravind Jugnauth declared a state of environmental emergency.

France has sent a military aircraft carrying pollution control equipment from the nearby island of Reunion to help mitigate the disaster. Additionally, Japan has sent a six-member team to assist as well, the BBC reported.

The teams are working to pump out the remaining oil from the ship, which was believed to be carrying 4,000 metric tons of fuel.

"We are expecting the worst," Mauritian Wildlife Foundation manager Jean Hugues Gardenne said on Monday, The Weather Channel reported. "The ship is showing really big, big cracks. We believe it will break into two at any time, at the maximum within two days. So much oil remains in the ship, so the disaster could become much worse. It's important to remove as much oil as possible. Helicopters are taking out the fuel little by little, ton by ton."

Sunil Dowarkasing, a former strategist for Greenpeace International and former member of parliament in Mauritius, told CNN that the ship contains three oil tanks. The one that ruptured has stopped leaking oil, giving disaster crews time to use a tanker and salvage teams to remove oil from the other two tanks before the ship splits.

By the end of Tuesday, the crew had removed over 1,000 metric tons of oil from the ship, NPR reported, leaving about 1,800 metric tons of oil and diesel, according to the company that owns the ship. So far the frantic efforts are paying off. Earlier today, a local police chief told BBC that there were still 700 metric tons aboard the ship.

The oil spill has already killed marine animals and turned the turquoise water black. It's also threatening the long-term viability of the country's coral reefs, lagoons and shoreline, NBC News reported.

"We are starting to see dead fish. We are starting to see animals like crabs covered in oil, we are starting to see seabirds covered in oil, including some which could not be rescued," said Vikash Tatayah, conservation director at Mauritius Wildlife Foundation, according to The Weather Channel.

While the Mauritian authorities have asked residents to leave the clean-up to officials, locals have organized to help.

"People have realized that they need to take things into their hands. We are here to protect our fauna and flora," environmental activist Ashok Subron said in an AFP story.

Reuters reported that sugar cane leaves, plastic bottles and human hair donated by locals are being sewn into makeshift booms.

Human hair absorbs oil, but not water, so scientists have long suggested it as a material to contain oil spills, Gizmodo reported. Mauritians are currently collecting as much human hair as possible to contribute to the booms, which consist of tubes and nets that float on the water to trap the oil.

A northern mockingbird on June 24, 2016. Renee Grayson / CC BY 2.0

Environmentalists and ornithologists found a friend in a federal court on Tuesday when a judge struck down a Trump administration attempt to allow polluters to kill birds without repercussions through rewriting the Migratory Treaty Bird Act (MBTA).

Read More Show Less
A spiny dogfish shark swims in the Olympic Coast National Marine Sanctuary off the coast of Washington. NOAA / Wikimedia Commons

By Elizabeth Claire Alberts

There are trillions of microplastics in the ocean — they bob on the surface, float through the water column, and accumulate in clusters on the seafloor. With plastic being so ubiquitous, it's inevitable that marine organisms, such as sharks, will ingest them.

Read More Show Less

Trending

A "vessel of opportunity" skims oil spilled after the Deepwater Horizon well blowout in the Gulf of Mexico in April 2010. NOAA / Flickr / CC by 2.0

By Loveday Wright and Stuart Braun

After a Japanese-owned oil tanker struck a reef off Mauritius on July 25, a prolonged period of inaction is threatening to become an ecological disaster.

Read More Show Less