Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Good News: EVs Are Not Crashing the Grid

Renewable Energy
Good News: EVs Are Not Crashing the Grid
iStock

By Noah Garcia

"Clean up the grid. Electrify everything."

That's a brief summary of what Southern California Edison and a growing number of U.S. electric utilities are aiming for to decarbonize the power and transportation sectors in a mighty one-two punch. Some may worry that charging hundreds of thousands–and then millions–of electric vehicles (EVs) will spell trouble for electric grid maintenance and reliability. However, a new analysis of real world data from California brings good news: EVs are not crashing the grid.


Since 2012, California regulators have required the state's three investor-owned utilities–which serve three-quarters of the state's electric demand–to file reports that primarily look at how EVs affect the local grid and drivers' charging behavior. With 350,000 vehicles that are often clustered in certain neighborhoods, California's experience managing EVs and the grid should be a welcomed postcard from the future for all states experiencing EV growth.

The results are in, and here are the top line findings from Synapse Energy Economics to-date:

  • The grid can reliably accommodate hundreds of thousands of EVs
  • Time-of-use (TOU) rates are simple and useful tools for shifting EV charging load to periods that are beneficial for the grid.

First, despite fears that EVs would overwhelm the existing electric grid infrastructure, only a very minor fraction of them—0.19 percent—have actually necessitated distribution system or service line upgrades. Moreover, this data point has translated to relatively low levels of EV-related spending on grid maintenance: of the $5 billion the utilities spend annually to maintain the distribution system, roughly $610,000 was attributable to the need to upgrade it to accommodate EVs. That's about 100th of 1 percent.

Pacific Gas and Electric, Southern California Edison and San Diego Gas and Electric are California's three investor-owned utilities (IOUs).Synapse Energy Economics

This is not to say, however, that we should not be acting now to ensure EV charging is sustainably integrated on the grid. The amount of power an EV can instantaneously draw from the grid to recharge is comparable to that of a single-family home, so shifting this large yet flexible demand to off-peak periods when there is plenty of spare electric capacity in the system with price signals can be an effective means to ease the stress on the grid (and on your wallet).

Charging off-peak in some areas may also align with increased renewable generation like wind and solar, meaning that more EVs are powered with emissions-free fuel. (See NRDC's Driving Out Pollution report for more) Each of the utilities in the report offers time-of-use (TOU) rates to their residential customers, and these TOU rates vary predictably depending on when the energy is used. For example, a kilowatt-hour used at midnight may be twice as cheap as one used at 4 p.m.

We now know in theory and in practice that these rates are more effective than conventional residential rates at incentivizing charging when its most beneficial to the entire electric system: the figures below convey the message that EV drivers on TOU rates do more charging off-peak and contribute to costly distribution system peaks much less often than drivers on flat rates. For context, a distribution peak is generally the period when electricity demand is greatest on the grid over the course of a day, month, or year. The greater the peak, the more expensive grid infrastructure and electric generation needed to meet the demand if left unchecked.

"Residential" describes customers that are on flat, non-TOU rates. "Single Meter" describes customers that have one meter for all home electric usage on a TOU rate. "Separate Meter" describes customers with a meter dedicated solely to TOU EV charging.Synapse Energy Economics

The data also reveal that the length of the off-peak periods affect the diversity of EV peaks: the greater the window of time to take advantage of low-cost electricity, the greater diversity in individual EV demand. That's a good thing. Think about a brick and mortar department store planning its sales strategy for the holiday rush. If the store is offering a discount on all items for only 24 hours, you might expect that store to be much more crowded and chaotic during that period than if it extended the sale for a week and allowed customers more flexibility to come in at different times.

The same principle holds true for EV charging. Generally, the greater the off-peak window (sale period), the less likely individual peaks (customers) will negatively affect system reliability (overcrowd the store so as to reduce the level of service). And with the "smarts" embedded in most EVs today, it's easy to "set and forget": drivers can program when they want their EV to charge and take advantage of the lower off-peak pricing available through TOU rates.

In short, California brings welcome news for all states experiencing and accelerating EV growth. Rather than crashing the grid, grid impacts from EVs to date in the country's largest market have been marginal. Moreover, TOU rates are transparent, effective tools for contributing to grid reliability and flexibility while driving greater fuel cost savings for EV drivers.

Therefore, states, utilities and grid planners need not fear transportation electrification; they should embrace it.

EcoWatch Daily Newsletter

The Ocean Cleanup

By Ute Eberle

In May 2017, shells started washing up along the Ligurian coast in Italy. They were small and purple and belonged to a snail called Janthina pallida that is rarely seen on land. But the snails kept coming — so many that entire stretches of the beach turned pastel.

Read More Show Less
Feeding an orphaned bear. Tom MacKenzie / USFWS

By Hope Dickens

Molly Craig's day begins with feeding hungry baby birds at 6 a.m. The birds need to be fed every 15 minutes until 7 at night. If she's not feeding them, other staff at the Fox Valley Wildlife Center in Elburn, Illinois take turns helping the hungry orphans.

Read More Show Less
Pexels

By Douglas Broom

"Forests are the lungs of our land, purifying the air and giving fresh strength to our people," said former U.S. president, Franklin Roosevelt.

Read More Show Less
A bald eagle flies over Lake Michigan. KURJANPHOTO / iStock / Getty Images Plus

A Michigan bald eagle proved that nature can still triumph over machines when it attacked and drowned a nearly $1,000 government drone.

Read More Show Less
The peloton ride passes through fire-ravaged Fox Creek Road in Adelaide Hills, South Australia, during the Tour Down Under cycling event on January 23, 2020. Brenton Edwards / AFP / Getty Images

A professional cycling race in Australia is under attack for its connections to a major oil and gas producer, the Guardian reports.

Read More Show Less
UQ study lead Francisca Ribeiro inspects oysters. The study of five different seafoods revealed plastic in every sample. University of Queensland

A new study of five different kinds of seafood revealed traces of plastic in every sample tested.

Read More Show Less

Trending

Cottongrass blows in the wind at the edge of Etivlik Lake, Alaska. Western Arctic National Parklands / Wikimedia Commons / CC by 2.0

By Tara Lohan

Warming temperatures on land and in the water are already forcing many species to seek out more hospitable environments. Atlantic mackerel are swimming farther north; mountain-dwelling pikas are moving upslope; some migratory birds are altering the timing of their flights.

Numerous studies have tracked these shifting ranges, looked at the importance of wildlife corridors to protect these migrations, and identified climate refugia where some species may find a safer climatic haven.

"There's a huge amount of scientific literature about where species will have to move as the climate warms," says U.C. Berkeley biogeographer Matthew Kling. "But there hasn't been much work in terms of actually thinking about how they're going to get there — at least not when it comes to wind-dispersed plants."

Kling and David Ackerly, professor and dean of the College of Natural Resources at U.C. Berkeley, have taken a stab at filling this knowledge gap. Their recent study, published in Nature Climate Change, looks at the vulnerability of wind-dispersed species to climate change.

It's an important field of research, because while a fish can more easily swim toward colder waters, a tree may find its wind-blown seeds landing in places and conditions where they're not adapted to grow.

Kling is careful to point out that the researchers weren't asking how climate change was going to change wind; other research suggests there likely won't be big shifts in global wind patterns.

Instead the study involved exploring those wind patterns — including direction, speed and variability — across the globe. The wind data was then integrated with data on climate variation to build models trying to predict vulnerability patterns showing where wind may either help or hinder biodiversity from responding to climate change.

One of the study's findings was that wind-dispersed or wind-pollinated trees in the tropics and on the windward sides of mountain ranges are more likely to be vulnerable, since the wind isn't likely to move those dispersers in the right direction for a climate-friendly environment.

The researchers also looked specifically at lodgepole pines, a species that's both wind-dispersed and wind-pollinated.

They found that populations of lodgepole pines that already grow along the warmer and drier edges of the species' current range could very well be under threat due to rising temperatures and related climate alterations.

"As temperature increases, we need to think about how the genes that are evolved to tolerate drought and heat are going to get to the portions of the species' range that are going to be getting drier and hotter," says Kling. "So that's what we were able to take a stab at predicting and estimating with these wind models — which populations are mostly likely to receive those beneficial genes in the future."

That's important, he says, because wind-dispersed species like pines, willows and poplars are often keystone species whole ecosystems depend upon — especially in temperate and boreal forests.

And there are even more plants that rely on pollen dispersal by wind.

"That's going to be important for moving genes from the warmer parts of a species' range to the cooler parts of the species' range," he says. "This is not just about species' ranges shifting, but also genetic changes within species."

Kling says this line of research is just beginning, and much more needs to be done to test these models in the field. But there could be important conservation-related benefits to that work.

"All these species and genes need to migrate long distances and we can be thinking more about habitat connectivity and the vulnerability of these systems," he says.

The more we learn, the more we may be able to do to help species adapt.

"The idea is that there will be some landscapes where the wind is likely to help these systems naturally adapt to climate change without much intervention, and other places where land managers might really need to intervene," he says. "That could involve using assisted migration or assisted gene flow to actually get in there, moving seeds or planting trees to help them keep up with rapid climate change."


Tara Lohan is deputy editor of The Revelator and has worked for more than a decade as a digital editor and environmental journalist focused on the intersections of energy, water and climate. Her work has been published by The Nation, American Prospect, High Country News, Grist, Pacific Standard and others. She is the editor of two books on the global water crisis. http://twitter.com/TaraLohan

Reposted with permission from The Revelator.