Quantcast
Environmental News for a Healthier Planet and Life

Earthworms Detoxify Pesticides From Soil at Significant Cost

Earthworms that make their home in contaminated soil do so at a significant cost, according to French and Danish researchers. Results of the study, Acclimation of earthworms to chemicals in anthropogenic landscapes, physiological mechanisms and soil ecological implications, found that earthworms exposed to fungicides in conventionally farmed soil were at a stark disadvantage to worms in land managed organically. Earthworms exposed to the fungicide product Opus, containing active ingredient epoxiconazole, were able to detoxify the chemical, but gained half as much weight as worms from an organic farm, where their population was also two to three times higher.

Earthworms provide many crucial ecosystem services, from increasing soil porosity and aggregation to providing channels for root growth.
Photo courtesy of Shutterstock

The study observed the adaptation capability of earthworms by comparing the response from those in land managed conventionally for 20 years to those in land managed organically for the same amount of time. Researchers focused on the metabolic changes seen in each group of worms after exposure to epoxiconazole.

According to the study’s authors:

The fungicide increased metabolism rate in the worms, both the adapted worms and the not adapted worms. In the not adapted worms we saw that their energy reserve of glycogen was used faster. Contrastingly, only in the adapted worms we saw that amino acids and protein contents increased, suggesting a detoxification mechanism. They also increased their feeding activity, possibly to compensate for the increase in energy demand.

Expending all of this energy takes a heavy toll on the earthworm population as a whole. “We see that the worms have developed methods to detoxify themselves, so that they can live in soil sprayed with fungicide. They spend a lot of energy on detoxifying, and that comes with a cost: the worms do not reach the same size as other worms, and we see that there are fewer of them in sprayed soil. An explanation could be that they are less successful at reproducing, because they spend their energy on ridding themselves of the pesticide,” the researchers—PhD student Nicolas Givaudan and associate professor, Claudia Wiegand, PhD—said. Worms taken from organic soil weighed .6 grams on average while those living in conventional soil averaged only .3 grams.

Researchers note that previous studies have found that 70 percent of fungicides do not reach the target crop, eventually leading to residual compounds in the soil. The fact that this investigation focused on environmentally relevant sub-lethal concentrations of epoxiconazole provides further evidence of how the conventional approach to agriculture weakens the resiliency of natural systems, even when these chemicals are “used as directed.”

Earthworms provide crucial ecosystem services, increasing soil porosity and aggregation, providing channels for root growth, and stimulating microbial activity as digested organic matter passes through their intestines, among numerous other benefits. Recent studies show that earthworms even play an important role in sequestering carbon dioxide in the soil.

The organic, “feed the soil” approach emphasizes the importance of maintaining and strengthening soil ecology. Under the U.S. Organic Foods Production Act, a farm’s crop production plain must “contain provisions designed to foster soil fertility.” By eschewing harsh chemical pesticides and fertilizers, organic agriculture creates a soil ecosystem that confers significant benefits to crops though increased pest and disease resilience. Studies show that, for example, organic methods of farming strawberries lead to healthier berries and soils, and result in improved pollination success. Farmers don’t need to apply soil-harming pesticides in order maintain crop yields. A 13 year Iowa State University study released in 2011 found organic production returned about $200 per acre more than conventional agriculture, and produced comparable yields and healthier soils.

--------

YOU MIGHT ALSO LIKE

10 Interesting Facts About Earthworms

Soil Microbes Alter DNA in Response to Climate Change

7 Tips to Prep for Gardening Season

--------

EcoWatch Daily Newsletter

Moroccan patients who recovered from the novel coronavirus disease celebrate with medical staff as they leave the hospital in Sale, Morocco, on April 3, 2020. AFP / Getty Images

By Tom Duszynski

The coronavirus is certainly scary, but despite the constant reporting on total cases and a climbing death toll, the reality is that the vast majority of people who come down with COVID-19 survive it. Just as the number of cases grows, so does another number: those who have recovered.

In mid-March, the number of patients in the U.S. who had officially recovered from the virus was close to zero. That number is now in the tens of thousands and is climbing every day. But recovering from COVID-19 is more complicated than simply feeling better. Recovery involves biology, epidemiology and a little bit of bureaucracy too.

Read More Show Less
Reef scene with crinoid and fish in the Great Barrier Reef, Australia. Reinhard Dirscherl / ullstein bild / Getty Images

By Elizabeth Claire Alberts

The future for the world's oceans often looks grim. Fisheries are set to collapse by 2048, according to one study, and 8 million tons of plastic pollute the ocean every year, causing considerable damage to delicate marine ecosystems. Yet a new study in Nature offers an alternative, and more optimistic view on the ocean's future: it asserts that the entire marine environment could be substantially rebuilt by 2050, if humanity is able to step up to the challenge.

Read More Show Less
Sponsored
A daughter touches her father's head while saying goodbye as medics prepare to transport him to Stamford Hospital on April 02, 2020 in Stamford, Connecticut. He had multiple COVID-19 symptoms. John Moore / Getty Images

Across the country, the novel coronavirus is severely affecting black people at much higher rates than whites, according to data released by several states, as The New York Times reported.

Read More Show Less
Four rolls of sourdough bread are arranged on a surface. Photo by Laura Chase de Formigny and food styling by Lisa Cherkasky for The Washington Post / Getty Images

By Zulfikar Abbany

Bread has been a source of basic nutrition for centuries, the holy trinity being wheat, maize and rice. It has also been the reason for a lot of innovation in science and technology, from millstones to microbiological investigations into a family of single-cell fungi called Saccharomyces.

Read More Show Less

Trending

A coral reef in Egypt's Red Sea. Tropical ocean ecosystems could see sudden biodiversity losses this decade if emissions are not reduced. Georgette Douwma / Stone / Getty Images

The biodiversity loss caused by the climate crisis will be sudden and swift, and could begin before 2030.

Read More Show Less