Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

This Solar Device Converts Seawater to Drinking Water

Science
Tests on an MIT building rooftop showed that a simple proof-of-concept desalination device could produce clean, drinkable water at a rate equivalent to more than 1.5 gallons per hour for each square meter of solar collecting area. Images courtesy of the researchers

By Paul Brown

An international team of scientists has developed a cheap way to provide fresh water to thirsty communities by making seawater drinkable without using electricity.


So long as the sun is shining, they say, their device will produce enough high-quality potable water to cover a family's needs, at a cost of around $100.

The scientists, from Massachusetts institute of Technology (MIT), U.S. and Shanghai Jiao Tong University, China, believe their brainwave offers a simple solution to thirsty islands and arid coastal areas which lack a reliable electricity supply but have access to seawater. It could even help to prevent some of the mass migrations expected with climate change.

The researchers report their work in the journal Energy and Environmental Science. Testing their prototype on a roof at the Massachusetts Institute of Technology, they produced more than 1.5 gallons of fresh drinking water every hour for every square meter of solar collecting area.

Their device is cube-shaped, with multiple layers of solar evaporators and condensers piled one on top of another, surmounted with a layer of transparent insulation. Essentially it is a multi-layer solar still, similar to those used for centuries to make strong liquor and used today in many applications.

Diagram illustrates the basic structure of the proposed desalination system. Sunlight passes through a transparent insulating layer at left, to heat up a black heat-absorbing material, which transfers the heat to a layer of wicking material (shown in blue), where it evaporates and then condenses on a surface (gray) and then drips off to be collected as fresh, potable water. Images courtesy of the researchers

A solar still uses flat panels to absorb heat which it then transfers to a layer of water, which begins to evaporate. The vapor condenses on the next panel and the water is collected, while the heat from the vapor condensation is passed to the layer above.

Whenever vapor condenses on a surface, it releases heat; in typical condenser systems, that heat is simply lost to the environment. But in this multi-layer version the released heat flows to the next evaporating layer, recycling the solar heat and boosting overall efficiency.

The efficiency comes from using each of the multiple stages to remove salt from the sea water, with the heat released by the previous stage harnessed instead of wasted. In this way, the team's demonstration device achieved an overall efficiency of 385 percent in converting the energy of sunlight into evaporation.

Evelyn Wang, a co-author, said: "When you condense water, you release energy as heat. If you have more than one stage, you can take advantage of that heat."

Cost Trade-Off

Although adding more layers increases the conversion efficiency of the system, each layer also adds cost and bulk. The team settled on a 10-stage system for their proof-of-concept device.

It delivered pure water that exceeded city drinking water standards, at a rate of 5.78 liters per square meter (about 1.52 gallons per 11 square feet) of solar collecting area. This is more than twice as much as the record amount previously produced by any such passive solar-powered desalination system, Professor Wang says.

And a big advantage of the system is that it has a self-flushing mechanism which will clean out the accumulation of salt each night and return it to the sea.

One possible way of using the system would be with floating panels on a body of saltwater. The panels could deliver constant fresh water through pipes to the shore so long as the sun was shining. Other systems could be designed to serve a single household, perhaps using a flat panel on a large shallow tank of seawater.

The team estimates that a system with a roughly one-square-meter solar collecting area could meet the daily drinking water needs of one person. In production, they think a system built to serve the needs of a family might be built for around $100.

Cheaper Replacements

The most expensive component of the prototype is the layer of transparent aerogel used as an insulator at the top of the stack, but the team suggests other less expensive insulators could be used instead. (The aerogel itself is made from very cheap silica but requires specialized drying equipment during its manufacture.)

"This new approach is very significant," says Professor Ravi Prasher of Lawrence Berkeley National Laboratory and the University of California at Berkeley, who was not involved in the research.

"One of the challenges in solar still-based desalination has been low efficiency due to the loss of significant energy in condensation.

"By efficiently harvesting the condensation energy, the overall solar to vapour efficiency is dramatically improved … This increased efficiency will have an overall impact on reducing the cost of produced water."

Reposted with permission from Climate News Network.

EcoWatch Daily Newsletter

Food Tank

By Danielle Nierenberg and Alonso Diaz

With record high unemployment, a reeling global economy, and concerns of food shortages, the world as we know it is changing. But even as these shifts expose inequities in the health and food systems, many experts hope that the current moment offers an opportunity to build a new and more sustainable food system.

Read More Show Less
Pexels

By Brian J. Love and Julie Rieland

The COVID-19 pandemic has disrupted the U.S. recycling industry. Waste sources, quantities and destinations are all in flux, and shutdowns have devastated an industry that was already struggling.

Read More Show Less
Pixabay

By Kris Gunnars, BSc

Unhealthy foods play a primary role in many people gaining weight and developing chronic health conditions, more now than ever before.

Read More Show Less
A man pushes his mother in a wheelchair down Ocean Drive in South Beach, Miami on May 19, 2020, amid the novel coronavirus pandemic. CHANDAN KHANNA / AFP via Getty Images

The U.S. reported more than 55,000 new coronavirus cases on Thursday, in a sign that the outbreak is not letting up as the Fourth of July weekend kicks off.

Read More Show Less
To better understand how people influence the overall health of dolphins, Oklahoma State University's Unmanned Systems Research Institute is developing a drone to collect samples from the spray that comes from their blowholes. Ken Y. / CC by 2.0

By Jason Bruck

Human actions have taken a steep toll on whales and dolphins. Some studies estimate that small whale abundance, which includes dolphins, has fallen 87% since 1980 and thousands of whales die from rope entanglement annually. But humans also cause less obvious harm. Researchers have found changes in the stress levels, reproductive health and respiratory health of these animals, but this valuable data is extremely hard to collect.

Read More Show Less

Sunscreen pollution is accelerating the demise of coral reefs globally by causing permanent DNA damage to coral. gonzalo martinez / iStock / Getty Images Plus

On July 29, Florida Governor Ron DeSantis signed into law a controversial bill prohibiting local governments from banning certain types of sunscreens.

Read More Show Less

Trending

Oat milk is popping up at coffee shops and grocery stores alike, quickly becoming one of the trendiest plant-based milks. jacqueline / CC by 2.0

By Kelli McGrane

Oat milk is popping up at coffee shops and grocery stores alike, quickly becoming one of the trendiest plant-based milks.

Read More Show Less