Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

This Solar Device Converts Seawater to Drinking Water

Science
This Solar Device Converts Seawater to Drinking Water
Tests on an MIT building rooftop showed that a simple proof-of-concept desalination device could produce clean, drinkable water at a rate equivalent to more than 1.5 gallons per hour for each square meter of solar collecting area. Images courtesy of the researchers

By Paul Brown

An international team of scientists has developed a cheap way to provide fresh water to thirsty communities by making seawater drinkable without using electricity.


So long as the sun is shining, they say, their device will produce enough high-quality potable water to cover a family's needs, at a cost of around $100.

The scientists, from Massachusetts institute of Technology (MIT), U.S. and Shanghai Jiao Tong University, China, believe their brainwave offers a simple solution to thirsty islands and arid coastal areas which lack a reliable electricity supply but have access to seawater. It could even help to prevent some of the mass migrations expected with climate change.

The researchers report their work in the journal Energy and Environmental Science. Testing their prototype on a roof at the Massachusetts Institute of Technology, they produced more than 1.5 gallons of fresh drinking water every hour for every square meter of solar collecting area.

Their device is cube-shaped, with multiple layers of solar evaporators and condensers piled one on top of another, surmounted with a layer of transparent insulation. Essentially it is a multi-layer solar still, similar to those used for centuries to make strong liquor and used today in many applications.

Diagram illustrates the basic structure of the proposed desalination system. Sunlight passes through a transparent insulating layer at left, to heat up a black heat-absorbing material, which transfers the heat to a layer of wicking material (shown in blue), where it evaporates and then condenses on a surface (gray) and then drips off to be collected as fresh, potable water. Images courtesy of the researchers

A solar still uses flat panels to absorb heat which it then transfers to a layer of water, which begins to evaporate. The vapor condenses on the next panel and the water is collected, while the heat from the vapor condensation is passed to the layer above.

Whenever vapor condenses on a surface, it releases heat; in typical condenser systems, that heat is simply lost to the environment. But in this multi-layer version the released heat flows to the next evaporating layer, recycling the solar heat and boosting overall efficiency.

The efficiency comes from using each of the multiple stages to remove salt from the sea water, with the heat released by the previous stage harnessed instead of wasted. In this way, the team's demonstration device achieved an overall efficiency of 385 percent in converting the energy of sunlight into evaporation.

Evelyn Wang, a co-author, said: "When you condense water, you release energy as heat. If you have more than one stage, you can take advantage of that heat."

Cost Trade-Off

Although adding more layers increases the conversion efficiency of the system, each layer also adds cost and bulk. The team settled on a 10-stage system for their proof-of-concept device.

It delivered pure water that exceeded city drinking water standards, at a rate of 5.78 liters per square meter (about 1.52 gallons per 11 square feet) of solar collecting area. This is more than twice as much as the record amount previously produced by any such passive solar-powered desalination system, Professor Wang says.

And a big advantage of the system is that it has a self-flushing mechanism which will clean out the accumulation of salt each night and return it to the sea.

One possible way of using the system would be with floating panels on a body of saltwater. The panels could deliver constant fresh water through pipes to the shore so long as the sun was shining. Other systems could be designed to serve a single household, perhaps using a flat panel on a large shallow tank of seawater.

The team estimates that a system with a roughly one-square-meter solar collecting area could meet the daily drinking water needs of one person. In production, they think a system built to serve the needs of a family might be built for around $100.

Cheaper Replacements

The most expensive component of the prototype is the layer of transparent aerogel used as an insulator at the top of the stack, but the team suggests other less expensive insulators could be used instead. (The aerogel itself is made from very cheap silica but requires specialized drying equipment during its manufacture.)

"This new approach is very significant," says Professor Ravi Prasher of Lawrence Berkeley National Laboratory and the University of California at Berkeley, who was not involved in the research.

"One of the challenges in solar still-based desalination has been low efficiency due to the loss of significant energy in condensation.

"By efficiently harvesting the condensation energy, the overall solar to vapour efficiency is dramatically improved … This increased efficiency will have an overall impact on reducing the cost of produced water."

Reposted with permission from Climate News Network.

Rabbi Shmuel Herzfeld has his arm disinfected by Dr. Chao Wang during a Moderna clinical trial for a coronavirus vaccine at Meridian Clinical Research in Rockville, Maryland on July 27, 2020. Amanda Andrade-Rhoades for The Washington Post via Getty Images

The secretive blueprints for two of the leading vaccine candidates for the coronavirus were released Thursday. Pfizer and Moderna became the first two companies among the nine leading vaccine candidates to share their study designs, hoping that the disclosures will create trust and clarity for the public, as The New York Times reported.

Read More Show Less

EcoWatch Daily Newsletter

New Zealand could be the first country in the world to require its major financial institutions to report on the risks posed by the climate crisis. Lawrence Murray / Wikimedia Commons / CC by 2.0

New Zealand could be the first country in the world to require its major financial institutions to report on the risks posed by the climate crisis.

Read More Show Less

Trending

Patagonia's current logo. Ajay Suresh / CC BY 2.0

Eco-friendly outdoor brand Patagonia has a colorful and timely message stitched into the tags of its latest line of shorts. "VOTE THE A**HOLES," it reads.

Read More Show Less
The Tyre Collective's patent-pending technology captures tire wear right at the wheel. The James Dyson Award

This year, the UK National James Dyson Award went to a team of student designers who want to reduce the environmental impact of car tires.

Read More Show Less
The USDA and the meatpacking industry worked together to downplay and disregard risks to worker health during the COVID-19 pandemic. RGtimeline / Getty Images

By Brett Wilkins

The U.S. Department of Agriculture (USDA) and the meatpacking industry worked together to downplay and disregard risks to worker health during the Covid-19 pandemic, as shown in documents published Monday by Public Citizen and American Oversight.

Read More Show Less

Support Ecowatch