Direct CO2 Capture Machines Could Use ‘a Quarter of Global Energy’ in 2100

By Simon Evans
Machines that suck CO2 directly from the air could cut the cost of meeting global climate goals, a new study finds, but they would need as much as a quarter of global energy supplies in 2100.
The research, published Monday in Nature Communications, is the first to explore the use of direct air capture (DAC) in multiple computer models. It shows that a "massive" and energy-intensive rollout of the technology could cut the cost of limiting warming to 1.5 or 2 C above pre-industrial levels.
But the study also highlights the "clear risks" of assuming that DAC will be available at scale, with global temperature goals being breached by up to 0.8 C if the technology then fails to deliver.
This means policymakers should not see DAC as a "panacea" that can replace immediate efforts to cut emissions, one of the study authors tells Carbon Brief, adding: "The risks of that are too high."
DAC should be seen as a "backstop for challenging abatement" where cutting emissions is too complex or too costly, says the chief executive of a startup developing the technology. He tells Carbon Brief that his firm nevertheless will "continuously push back on the 'magic bullet' headlines."
Negative Emissions
The 2015 Paris agreement set a goal of limiting human-caused warming to "well below" 2 C and an ambition of staying below 1.5 C. Meeting this ambition will require the use of "negative emissions technologies" to remove excess CO2 from the atmosphere, according to the Intergovernmental Panel on Climate Change (IPCC).
This catch-all term covers a wide range of approaches, including planting trees, restoring peatlands and other "natural climate solutions." However, model pathways developed by researchers rely most heavily on bioenergy with carbon capture and storage (BECCS). This is where biomass, such as wood pellets, is burned to generate electricity and the resulting CO2 is captured and stored.
The significant potential role for BECCS raises a number of concerns, with land areas up to five times the size of India devoted to growing the biomass needed in some model pathways.
One alternative is direct air capture, where machines are used to suck CO2 out of the atmosphere. If the CO2 is then buried underground, the process is sometimes referred to as direct air carbon capture and storage (DACCS).
The new study explores how DAC could help meet global climate goals with "lower costs," using two different integrated assessment models (IAMs). Study author Dr. Ajay Gambhir, senior research fellow at the Grantham Institute for Climate Change at Imperial College London, explains to Carbon Brief:
"This is the first inter-model comparison … [and] has the most detailed representation of DAC so far used in IAMs. It includes two DAC technologies, with different energy inputs and cost assumptions, and a range of energy inputs including waste heat. The study uses an extensive sensitivity analysis [to test the impact of varying our assumptions]. It also includes initial analysis of the broader impacts of DAC technology development, in terms of material, land and water use."
The two DAC technologies included in the study are based on different ways to adsorb CO2 from the air, which are being developed by a number of startup companies around the world.
One, typically used in larger industrial-scale facilities such as those being piloted by Canadian firm Carbon Engineering, uses a solution of hydroxide to capture CO2. This mixture must then be heated to high temperatures to release the CO2 so it can be stored and the hydroxide reused. The process uses existing technology and is currently thought to have the lower cost of the two alternatives.
The second technology uses amine adsorbents in small, modular reactors such as those being developed by Swiss firm Climeworks. Costs are currently higher, but the potential for savings is thought to be greater, the paper suggests. This is due to the modular design that could be made on an industrial production line, along with lower temperatures needed to release CO2 for storage, meaning waste heat could be used.
Delayed Cuts
Overall, despite "huge uncertainty" around the cost of DAC, the study suggests its use could allow early cuts in global greenhouse gas emissions to be somewhat delayed, "significantly reduc[ing] climate policy costs" to meet stringent temperature limits.
Using DAC means that global emissions in 2030 could remain at higher levels, the study says, with much larger use of negative emissions later in the century. This is shown in the charts, below, for scenarios staying below 1.5 C (left panel, shades of blue) and 2 C (right, green).
Pathways without DAC are shown in darker shades. For example, the solid dark blue line shows results from the "TIAM" model, with emissions peaking around 2020 and falling rapidly to below zero around 2050.
In contrast, the light blue solid line shows a pathway where DAC allows a more gradual decline, reaching zero in the 2060s and with negative emissions of around 30 billion tonnes per year (Gt/yr) by the 2080s. This is close to today's annual global emissions of around 40GtCO2/yr.
Global CO2 emissions from fossil fuels (Gt/yr) in model pathways consistent with limiting warming this century to 1.5 C (left panel, blue) or 2 C (right panel, green). Results from two different IAMs – TIAM and WITCH – are shown with solid and dashed lines, respectively. The various lines show scenarios that use direct capture ("DAC," darker shades) and those that do not ("NoDAC," lighter), as well as pathways to 2 C without negative emissions of any sort ("NoNET," darkest green). Source: Realmonte et al. (2019).
"The results of both models are surprisingly similar," says Dr. Nico Bauer, a scientist at the Potsdam Institute for Climate Impacts Research (PIK), who was not involved in the study. He tells Carbon Brief: "This increases the credibility about the main conclusions that the DACCS technology can play an important role in a long-term climate change mitigation strategy."
The use of DAC in some of the modeled pathways delays the need to cut emissions in certain areas. The paper explains: "DACCS allows a reduction in near term mitigation effort in some energy-intensive sectors that are difficult to decarbonise, such as transport and industry."
Steve Oldham, chief executive of DAC startup Carbon Engineering says he sees this as the key purpose of CO2 removal technologies, which he likens to other "essential infrastructure" such as waste disposal or sewage treatment.
Oldham tells Carbon Brief that while standard approaches to cutting CO2 remain essential for the majority of global emissions, the challenge and cost may prove too great in some sectors. He says:
"DAC and other negative emissions technologies are the right solution once the cost and feasibility becomes too great … I see us as the backstop for challenging abatement."
Comparing Costs
Even though DAC may be relatively expensive, the model pathways in the new study still see it as much cheaper than cutting emissions from these hard-to tackle sectors. This means the models deploy large amounts of DAC, even if its costs are at the high end of current estimates.
It also means the models see pathways to meeting climate goals that include DAC as having lower costs overall ("reduce[d]… by between 60 to more than 90%").
Gambhir tells Carbon Brief: "Deploying DAC means less of a steep mitigation pathway in the near-term, and lowers policy costs, according to the modeled scenarios we use in this study."
However, the paper also points to the significant challenges associated with such a large-scale, rapid deployment of DAC, in terms of energy use and the need for raw materials.
The energy needed to run direct air capture machines in 2100 is up to 300 exajoules each year, according to the paper. This is more than half of overall global demand today, from all sources, and despite rising demand this century, it would still be a quarter of expected demand in 2100.
To put it another way, it would be equivalent to the current annual energy demand of China, the U.S., the EU and Japan combined – or the global supply of energy from coal and gas in 2018.
Gambhir tells Carbon Brief:
"Large-scale deployment of DAC in below-2°C scenarios will require a lot of heat and electricity and a major manufacturing effort for production of CO2 sorbent. Although DAC will use less resources such as water and land than other NETs [such as BECCS], a proper full life-cycle assessment needs to be carried out to understand all resource implications."
Deployment Risk
There are also questions as to whether this new technology could be rolled out at the speed and scale envisaged, with expansion at up to 30% each year and deployment reaching 30GtCO2/yr towards the end of the century. This is a "huge pace and scale," Gambhir says, with the rate of deployment being a "key sensitivity" in the study results.
Professor Jennifer Wilcox, professor of chemical engineering at Worcester Polytechnic Institute, who was not involved with the research, says that this rate of scale-up warrants caution. She tells Carbon Brief:
"Is the rate of scale-up even feasible? Typical rules of thumb are increase by an order of magnitude per decade [growth of around 25-30% per year]. [Solar] PV scale-up was higher than this, but mostly due to government incentives … rather than technological advances."
Reaching 30GtCO2/yr of CO2 capture – a similar scale to current global emissions – would mean building some 30,000 large-scale DAC factories, the paper says. For comparison, there are fewer than 10,000 coal-fired power stations in the world today.
If DAC were to be carried out using small modular systems, then as many as 30m might be needed by 2100, the paper says. It compares this number to the 73m light vehicles that are built each year.
The study argues that expanding DAC at such a rapid rate is comparable to the speed with which newer electricity generation technologies such as nuclear, wind and solar have been deployed.
Climeworks greenhouse © Climeworks / Julia Dunlop
The modeled rate of DAC growth is "breathtaking" but "not in contradiction with the historical experience," Bauer says. This rapid scale-up is also far from the only barrier to DAC adoption.
The paper explains: "[P]olicy instruments and financial incentives supporting negative emission technologies are almost absent at the global scale, though essential to make NET deployment attractive."
Carbon Engineering's Oldham agrees that there is a need for policy to recognize negative emissions as unique and different from standard mitigation. But he tells Carbon Brief that he remains "very very confident" in his company's ability to scale up rapidly.
(The new study includes consideration of the space available to store CO2 underground, finding this not to be a limiting factor for DAC deployment.)
Breaching Limits
The paper says that the challenges to scale-up and deployment on a huge scale bring significant risks, if DAC does not deliver as anticipated in the models. Committing to ramping up DAC rather than cutting emissions could mean locking the energy system into fossil fuels, the authors warn.
This could risk breaching the Paris temperature limits, the study explains:
"The risk of assuming that DACCS can be deployed at scale, and finding it to be subsequently unavailable, leads to a global temperature overshoot of up to 0.8°C."
Gambhir says the risks of such an approach are "too high":
"Inappropriate interpretations [of our findings] would be that DAC is a panacea and that we should ease near-term mitigation efforts because we can use it later in the century."
Bauer agrees:
"Policymakers should not make the mistake to believe that carbon removals could ever neutralise all future emissions that could be produced from fossil fuels that are still underground. Even under pessimistic assumptions about fossil fuel availability, carbon removal cannot and will not fix the problem. There is simply too much low-cost fossil carbon that we could burn."
Nonetheless, professor Massimo Tavoni, one of the paper's authors and the director of the European Institute on Economics and the Environment (EIEE), tells Carbon Brief that "it is still important to show the potential of DAC – which the models certainly highlight – but also the many challenges of deploying at the scale required."
The global carbon cycle poses one final – and underappreciated – challenge to the large-scale use of negative emissions technologies such as DAC: ocean rebound. This is because the amount of CO2 in the world's oceans and atmosphere is in a dynamic and constantly shifting equilibrium.
This equilibrium means that, at present, oceans absorb a significant proportion of human-caused CO2 emissions each year, reducing the amount staying in the atmosphere. If DAC is used to turn global emissions net-negative, as in the new study, then that equilibrium will also go into reverse.
As a result, the paper says as much as a fifth of the CO2 removed using DAC or other negative emissions technologies could be offset by the oceans releasing CO2 back into the atmosphere, reducing their supposed efficacy.
"We are in deep trouble." In my 2nd @EcoWatch post today, the latest @IEA data shows energy-related C02 emissions hit a record high in 2018: https://t.co/yESL234Q8j
— Olivia Rosane (@orosane) March 26, 2019
Reposted with permission from our media associate Carbon Brief.
By Katy Neusteter
The Biden-Harris transition team identified COVID-19, economic recovery, racial equity and climate change as its top priorities. Rivers are the through-line linking all of them. The fact is, healthy rivers can no longer be separated into the "nice-to-have" column of environmental progress. Rivers and streams provide more than 60 percent of our drinking water — and a clear path toward public health, a strong economy, a more just society and greater resilience to the impacts of the climate crisis.
Public Health
<img lazy-loadable="true" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yNTUyNDY3MC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY2MDkxMTkwNn0.pyP14Bg1WvcUvF_xUGgYVu8PS7Lu49Huzc3PXGvATi4/img.jpg?width=980" id="8e577" class="rm-shortcode" data-rm-shortcode-id="1efb3445f5c445e47d5937a72343c012" data-rm-shortcode-name="rebelmouse-image" data-width="3000" data-height="2302" />Wild and Scenic Merced River, California. Bob Wick / BLM
<p>Let's begin with COVID-19. More than <a href="https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html?name=styln-coronavirus&region=TOP_BANNER&block=storyline_menu_recirc&action=click&pgtype=LegacyCollection&impression_id=2f508610-2a87-11eb-8622-4f6c038cbd1d&variant=1_Show" target="_blank">16 million Americans</a> have contracted the coronavirus and, tragically,<a href="https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html?name=styln-coronavirus&region=TOP_BANNER&block=storyline_menu_recirc&action=click&pgtype=LegacyCollection&impression_id=2f508610-2a87-11eb-8622-4f6c038cbd1d&variant=1_Show" target="_blank"> more than</a> <a href="https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html?name=styln-coronavirus&region=TOP_BANNER&block=storyline_menu_recirc&action=click&pgtype=LegacyCollection&impression_id=2f508610-2a87-11eb-8622-4f6c038cbd1d&variant=1_Show" target="_blank">300,000 have died</a> due to the pandemic. While health officials encourage hand-washing to contain the pandemic, at least <a href="https://closethewatergap.org/" target="_blank">2 million Americans</a> are currently living without running water, indoor plumbing or wastewater treatment. Meanwhile, <a href="https://www.theguardian.com/us-news/2020/jun/23/millions-of-americans-cant-afford-water-bills-rise" target="_blank">aging water infrastructure is growing increasingly costly for utilities to maintain</a>. That cost is passed along to consumers. The upshot? <a href="https://research.msu.edu/affordable-water-in-us-reaching-a-crisis/" target="_blank">More than 13 million</a> U.S. households regularly face unaffordable water bills — and, thus, the threat of water shutoffs. Without basic access to clean water, families and entire communities are at a higher risk of <a href="https://www.americanprogress.org/issues/green/news/2020/08/05/488705/bridging-water-access-gap-covid-19-relief/" target="_blank">contracting</a> and spreading COVID-19.</p><p>We have a moral duty to ensure that everyone has access to clean water to help prevent the spread of the coronavirus. Last spring, <a href="https://nymag.com/intelligencer/2020/03/coronavirus-stimulus-bill-explained-bailouts-unemployment-benefits.html" target="_blank">Congress appropriated more than $4 trillion</a> to jumpstart the economy and bring millions of unemployed Americans back to work. Additional federal assistance — desperately needed — will present a historic opportunity to improve our crumbling infrastructure, which has been <a href="https://www.theguardian.com/us-news/2020/jun/23/millions-of-americans-cant-afford-water-bills-rise" target="_blank" rel="noopener noreferrer">grossly underfunded for decades</a>.</p><p>A report by my organization, American Rivers, suggests that <a href="https://s3.amazonaws.com/american-rivers-website/wp-content/uploads/2020/07/09223525/ECONOMIC-ENGINES-Report-2020.pdf" target="_blank" rel="noopener noreferrer">Congress must invest at least $50 billion</a> "to address the urgent water infrastructure needs associated with COVID-19," including the rising cost of water. This initial boost would allow for the replacement and maintenance of sewers, stormwater infrastructure and water supply facilities.</p>Economic Recovery
<p>Investing in water infrastructure and healthy rivers also creates jobs. Consider, for example, that <a href="https://tinyurl.com/y9p6sgnk" target="_blank">every $1 million spent on water infrastructure in the United States generates more than 15 jobs</a> throughout the economy, according to a report by the Value of Water Campaign. Similarly, <a href="https://tinyurl.com/yyvd2ksp" target="_blank">every "$1 million invested in forest and watershed restoration contracting will generate between 15.7 and 23.8 jobs,</a> depending on the work type," states a working paper released by the Ecosystem Workforce Program, University of Oregon. Healthy rivers also spur tourism and recreation, which many communities rely on for their livelihoods. According to the findings by the Outdoor Industry Association, which have been shared in our report, "Americans participating in watersports and fishing spend over <a href="https://s3.amazonaws.com/american-rivers-website/wp-content/uploads/2020/06/30222425/Exec-summary-ECONOMIC-ENGINES-Report-June-30-2020.pdf" target="_blank">$174 billion</a> on gear and trip related expenses. And, the outdoor watersports and fishing economy supports over <a href="https://s3.amazonaws.com/american-rivers-website/wp-content/uploads/2020/06/30222425/Exec-summary-ECONOMIC-ENGINES-Report-June-30-2020.pdf" target="_blank">1.5 million jobs nationwide</a>."</p><p>After the 2008 financial crisis, Congress invested in infrastructure to put Americans back to work. The American Recovery and Reinvestment Act <a href="https://thehill.com/blogs/congress-blog/economy-a-budget/25941-clean-water-green-infrastructure-get-major-boost" target="_blank">of 2009 (ARRA) allocated $6 billion</a> for clean water and drinking water infrastructure to decrease unemployment and boost the economy. More specifically, <a href="https://www.conservationnw.org/news-updates/us-reps-push-for-millions-of-restoration-and-resilience-jobs/" target="_blank" rel="noopener noreferrer">an analysis of ARRA</a> "showed conservation investments generated 15 to 33 jobs per million dollars," and more than doubled the rate of return, according to a letter written in May 2020 by 79 members of Congress, seeking greater funding for restoration and resilience jobs.</p><p>Today, when considering how to create work for the <a href="https://www.bls.gov/news.release/pdf/empsit.pdf" target="_blank" rel="noopener noreferrer">10.7 million</a> people who are currently unemployed, Congress should review previous stimulus investments and build on their successes by embracing major investments in water infrastructure and watershed restoration.</p>Racial Justice
<p>American Rivers also recommends that Congress dedicate <a href="https://s3.amazonaws.com/american-rivers-website/wp-content/uploads/2020/07/09223525/ECONOMIC-ENGINES-Report-2020.pdf" target="_blank" rel="noopener noreferrer">$500 billion for rivers and clean water over the next 10 years</a> — not just for the benefit of our environment and economy, but also to begin to address the United States' history of deeply entrenched racial injustice.</p><p>The <a href="https://www.epa.gov/npdes/sanitary-sewer-overflows-ssos" target="_blank" rel="noopener noreferrer">23,000-75,000 sewer overflows</a> that occur each year release up to <a href="https://www.americanrivers.org/2020/05/fighting-for-rivers-means-fighting-for-justice/#:~:text=There%20are%20also%2023%2C000%20to%2075%2C000%20sanitary%20sewer,to%20do%20with%20the%20mission%20of%20American%20Rivers." target="_blank" rel="noopener noreferrer">10 billion gallons of toxic sewage</a> <em>every day</em> into rivers and streams. This disproportionately impacts communities of color, because, for generations, Black, Indigenous, Latinx and other people of color have been <a href="https://www.scientificamerican.com/article/flooding-disproportionately-harms-black-neighborhoods/" target="_blank" rel="noopener noreferrer">relegated</a> to live in flood-prone areas and in neighborhoods that have been intentionally burdened with a lack of development that degrades people's health and quality of life. In some communities of color, incessant flooding due to stormwater surges or <a href="https://www.ajc.com/opinion/opinion-partnering-to-better-manage-our-water/7WQ6SEAQP5E4LGQCEYY5DO334Y/" target="_blank" rel="noopener noreferrer">combined sewer overflows</a> has gone unmitigated for decades.</p><p>We have historically treated people as separate from rivers and water. We can't do that anymore. Every voice — particularly those of people most directly impacted — must have a loudspeaker and be included in decision-making at the highest levels.</p><p>Accordingly, the new administration must diligently invest in projects at the community level that will improve lives in our country's most marginalized communities. We also must go further to ensure that local leaders have a seat at the decision-making table. To this end, the Biden-Harris administration should restore <a href="https://www.epa.gov/cwa-401#:~:text=Section%20401%20Certification%20The%20Clean%20Water%20Act%20%28CWA%29,the%20United%20States.%20Learn%20more%20about%20401%20certification." target="_blank">Section 401 of the Clean Water Act</a>, which was undermined by the <a href="https://earthjustice.org/news/press/2020/tribes-and-environmental-groups-sue-trump-administration-to-preserve-clean-water-protections#:~:text=Under%20Section%20401%20of%20the%20Clean%20Water%20Act%2C,seeks%20to%20undermine%20that%20authority%20in%20several%20ways%3A" target="_blank">Trump administration's 2020 regulatory changes</a>. This provision gives states and tribes the authority to decide whether major development projects, such as hydropower and oil and gas projects, move forward.</p>Climate Resilience
<p>Of course, the menacing shadow looming over it all? Climate change. <a href="https://media.ifrc.org/ifrc/wp-content/uploads/2020/11/IFRC_wdr2020/IFRC_WDR_ExecutiveSummary_EN_Web.pdf" target="_blank">More than 100 climate-related catastrophes</a> have pummeled the Earth since the pandemic was declared last spring, including the blitzkrieg of megafires, superstorms and heat waves witnessed during the summer of 2020, directly impacting the lives of more than <a href="https://media.ifrc.org/ifrc/wp-content/uploads/2020/11/IFRC_wdr2020/IFRC_WDR_ExecutiveSummary_EN_Web.pdf" target="_blank">50 million people globally</a>.</p><p>Water and climate scientist Brad Udall often says, "<a href="https://www.youtube.com/watch?v=xQhpj5G0dME" target="_blank">Climate change is water change</a>." In other words, the most obvious and dire impacts of climate change are evidenced in profound changes to our rivers and water resources. You've likely seen it where you live: Floods are more damaging and frequent. Droughts are deeper and longer. Uncertainty is destabilizing industry and lives.</p><p>By galvanizing action for healthy rivers and managing our water resources more effectively, we can insure future generations against the consequences of climate change. First, we must safeguard rivers that are still healthy and free-flowing. Second, we must protect land and property against the ravages of flooding. And finally, we must promote policies and practical solutions that take the science of climate disruption into account when planning for increased flooding, water shortage and habitat disruption.</p><p>Imagine all that rivers do for us. Most of our towns and cities have a river running through them or flowing nearby. Rivers provide clean drinking water, irrigate crops that provide our food, power our homes and businesses, provide wildlife habitat, and are the lifeblood of the places where we enjoy and explore nature, and where we play and nourish our spirits. Healthy watersheds help <a href="https://news.un.org/en/story/2020/03/1059952" target="_blank" rel="noopener noreferrer">mitigate</a> climate change, absorbing and reducing the amount of carbon in the atmosphere. Healthy rivers and floodplains help communities adapt and build resilience in the face of climate change by improving flood protection and providing water supply and quality benefits. Rivers are the cornerstones of healthy, strong communities.</p><p>The more than <a href="https://archive.epa.gov/water/archive/web/html/index-17.html" target="_blank" rel="noopener noreferrer">3 million miles</a> of rivers and streams running across our country are a source of great strength and opportunity. When we invest in healthy rivers and clean water, we can improve our lives. When we invest in rivers, we create jobs and strengthen our economy. When we invest in rivers, we invest in our shared future.</p>EcoWatch Daily Newsletter
Fifteen states are in for an unusually noisy spring.
- Millions of Cicadas Set to Emerge After 17 Years Underground ... ›
- Cicadas Show Up 4 Years Early - EcoWatch ›
Trending
Deep in the woods, a hairy, ape-like man is said to be living a quiet and secluded life. While some deny the creature's existence, others spend their lives trying to prove it.
- Why Hunting Isn't Conservation, and Why It Matters - Rewilding ›
- Decline In Hunters Threatens How U.S. Pays For Conservation : NPR ›
- Is Hunting Conservation? Let's examine it closely ›
- Oklahoma Department of Wildlife Conservation | Oklahoma ... ›
- Oklahoma Bill Calls for Bigfoot Hunting Season | Is Bigfoot Real? ›
By Jon Queally
Noted author and 350.org co-founder Bill McKibben was among the first to celebrate word that the president of the European Investment Bank on Wednesday openly declared, "To put it mildly, gas is over" — an admission that squares with what climate experts and economists have been saying for years if not decades.
- Fossil Fuel Industry Is Now 'in the Death Knell Phase': CNBC's Jim ... ›
- Mayors of 12 Major Global Cities Pledge Fossil Fuel Divestment ... ›
- World's Largest Public Bank Ditches Oil and Coal in Victory for the ... ›
A dwarf giraffe is seen in Uganda, Africa. Dr. Michael Brown, GCF
Nine feet tall is gigantic by human standards, but when researcher and conservationist Michael Brown spotted a giraffe in Uganda's Murchison Falls National Park that measured nine feet, four inches, he was shocked.
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="54af350ee3a2950e0e5e69d926a55d83"><iframe lazy-loadable="true" src="https://www.youtube.com/embed/yf4NRKzzTFk?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>
- Giraffe Parts Sold Across U.S. Despite Plummeting Wild Populations ... ›
- Green Groups Sue to Get Giraffes on Endangered Species List ... ›
- Conservationists Sound Alarm on Plummeting Giraffe Numbers ... ›