Quantcast

Snakes Could Be the Original Source of the New Coronavirus Outbreak in China

Science
Chinese cobra (Naja atra) with hood spread. Briston / Wikimedia, CC BY-SA

By Haitao Guo, Guangxiang "George" Luo and Shou-Jiang Gao

Snakes – the Chinese krait and the Chinese cobra – may be the original source of the newly discovered coronavirus that has triggered an outbreak of a deadly infectious respiratory illness in China this winter.


The illness was first reported in late December 2019 in Wuhan, a major city in central China, and has been rapidly spreading. Since then, sick travelers from Wuhan have infected people in China and other countries, including the U.S.

Using samples of the virus isolated from patients, scientists in China have determined the genetic code of the virus and used microscopes to photograph it. The pathogen responsible for this pandemic is a new coronavirus. It's in the same family of viruses as the well-known severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), which have killed hundreds of people in the past 17 years. The World Health Organization (WHO) has named the new coronavirus 2019-nCoV.

We are virologists and journal editors and are closely following this outbreak because there are many questions that need to be answered to curb the spread of this public health threat.

The many-banded krait (Bungarus multicinctus), also known as the Taiwanese krait or the Chinese krait, is a highly venomous species of elapid snake found in much of central and southern China and Southeast Asia. Briston/Wikimedia / CC BY-SA

What Is a Coronavirus?

The name of coronavirus comes from its shape, which resembles a crown or solar corona when imaged using an electron microscope.

Coronavirus is transmitted through the air and primarily infects the upper respiratory and gastrointestinal tract of mammals and birds. Though most of the members of the coronavirus family only cause mild flu-like symptoms during infection, SARS-CoV and MERS-CoV can infect both upper and lower airways and cause severe respiratory illness and other complications in humans.

This new 2019-nCoV causes similar symptoms to SARS-CoV and MERS-CoV. People infected with these coronaviruses suffer a severe inflammatory response.

Unfortunately, there is no approved vaccine or antiviral treatment available for coronavirus infection. A better understanding of the life cycle of 2019-nCoV, including the source of the virus, how it is transmitted and how it replicates are needed to both prevent and treat the disease.

An electron microscopic image reveals the crown shape structural details for which the coronavirus was named. This image is of the Middle East respiratory syndrome coronavirus (MERS-CoV). National Institute of Allergy and Infectious Diseases (NIAID)

Zoonotic Transmission

Both SARS and MERS are classified as zoonotic viral diseases, meaning the first patients who were infected acquired these viruses directly from animals. This was possible because while in the animal host, the virus had acquired a series of genetic mutations that allowed it to infect and multiply inside humans.

Now these viruses can be transmitted from person to person. Field studies have revealed that the original source of SARS-CoV and MERS-CoV is the bat, and that the masked palm civets (a mammal native to Asia and Africa) and camels, respectively, served as intermediate hosts between bats and humans.

In the case of this 2019 coronavirus outbreak, reports state that most of the first group of patients hospitalized were workers or customers at a local seafood wholesale market which also sold processed meats and live consumable animals including poultry, donkeys, sheep, pigs, camels, foxes, badgers, bamboo rats, hedgehogs and reptiles. However, since no one has ever reported finding a coronavirus infecting aquatic animals, it is plausible that the coronavirus may have originated from other animals sold in that market.

The hypothesis that the 2019-nCoV jumped from an animal at the market is strongly supported by a new publication in the Journal of Medical Virology. The scientists conducted an analysis and compared the genetic sequences of 2019-nCoV and all other known coronaviruses.

The study of the genetic code of 2019-nCoV reveals that the new virus is most closely related to two bat SARS-like coronavirus samples from China, initially suggesting that, like SARS and MERS, the bat might also be the origin of 2019-nCoV. The authors further found that the viral RNA coding sequence of 2019-nCoV spike protein, which forms the "crown" of the virus particle that recognizes the receptor on a host cell, indicates that the bat virus might have mutated before infecting people.

But when the researchers performed a more detailed bioinformatics analysis of the sequence of 2019-nCoV, it suggests that this coronavirus might come from snakes.

From Bats to Snakes

The researchers used an analysis of the protein codes favored by the new coronavirus and compared it to the protein codes from coronaviruses found in different animal hosts, like birds, snakes, marmots, hedgehogs, manis, bats and humans. Surprisingly, they found that the protein codes in the 2019-nCoV are most similar to those used in snakes.

Snakes often hunt for bats in the wild. Reports indicate that snakes were sold in the local seafood market in Wuhan, raising the possibility that the 2019-nCoV might have jumped from the host species – bats – to snakes and then to humans at the beginning of this coronavirus outbreak. However, how the virus could adapt to both the cold-blooded and warm-blooded hosts remains a mystery.

The authors of the report and other researchers must verify the origin of the virus through laboratory experiments. Searching for the 2019-nCoV sequence in snakes would be the first thing to do. However, since the outbreak, the seafood market has been disinfected and shut down, which makes it challenging to trace the new virus' source animal.

Sampling viral RNA from animals sold at the market and from wild snakes and bats is needed to confirm the origin of the virus. Nonetheless, the reported findings will also provide insights for developing prevention and treatment protocols.

The 2019-nCoV outbreak is another reminder that people should limit the consumption of wild animals to prevent zoonotic infections.

Haitao Guo is a professor of microbiology and molecular genetics at the University of Pittsburgh.
Guangxiang "George" Luo is a professor of microbiology at the University of Alabama at Birmingham.
Shou-Jiang Gao is a professor of microbiology and molecular genetics at the
University of Pittsburgh.

Disclosure statement: Haitao Guo is an associate editor of the Journal of Medical Virology. Guangxiang "George" Luo is the Deputy Editor-in-Chief of the Journal of Medical Virology. Shou-Jiang Gao is the Editor-in-Chief of the Journal of Medical Virology.

Reposted with permission from The Conversation.

EcoWatch Daily Newsletter

Malala Yousafzai (left) and Greta Thunberg (right) met in Oxford University Tuesday. Wikimedia Commons / CC BY 2.0

What happens when a famous school striker meets a renowned campaigner for education rights?

Read More
A coal-fired power station blocks out a sunrise in the UK. sturti / E+ / Getty Images

According to a recent National Oceanic and Atmospheric Administration (NOAA) report, the last time carbon dioxide levels were this high was 3 million years ago "when temperature was 2°–3°C (3.6°–5.4°F) higher than during the pre-industrial era, and sea level was 15–25 meters (50–80 feet) higher than today."

Read More
Sponsored
Passengers arrive in Los Angeles from Asia on Feb. 2. MARK RALSTON / AFP via Getty Images

The spread of the new coronavirus, COVID-19, could cause "severe" disruption to daily life in the U.S., public health officials warned Tuesday.

Read More
A harbour seal on an ice floe in Glacier Bay, Alaska. A new study shows that the climate crisis has warmed waters, changing ecosystems and crippling sea ice growth. Janette Hill / robertharding / Getty Images Plus

The climate crisis is accelerating the rate of change in Alaska's marine ecosystem far faster than scientists had previously thought, causing possibly irreversible changes, according to new research, as Newsweek reported.

Read More
Doctors report that only 1 in 4 children are getting the recommended 60 minutes of physical activity per day. Ronnie Kaufman / DigitalVision / Getty Images

By Dan Gray

Pediatricians are being urged to start writing "exercise prescriptions" for the children they see in their office.

Read More