Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Your Blood Type Could Make You More (or Less) Vulnerable to Coronavirus

Health + Wellness
Your Blood Type Could Make You More (or Less) Vulnerable to Coronavirus
A healthcare worker carries out a blood type test at Novosibirsk Blood Centre in Novosibirsk, Russia on May 22, 2020. Kirill Kukhmar / TASS via Getty Images

As coronavirus cases continue to climb as the world reopens, many scientists are hunting for clues to explain why some infected people get very sick while others experience only mild or no symptoms at all.


Three separate studies suggest that increased risk of contracting the coronavirus and of developing more serious COVID-19 symptoms is tied to blood type. Researchers in all three studies found Type O blood to be more "protective" against COVID-19 susceptibility and severity.

There are four main blood types — A, B, AB and O, explained the Red Cross, and proteins on the surface of your red blood cells determine which type you are.

In a study published Wednesday in the New England Journal of Medicine, genetic analysis of thousands of COVID-19 patients in Europe suggested a link between blood type and coronavirus risk. The researchers studied more than 1,900 severely ill coronavirus patients in Italy and Spain, comparing them to 2,300 people who were not sick or who only experienced mild symptoms, reported CNN.

People with Type A blood had a 45% higher risk of becoming infected than people with other blood types and of developing "COVID-19 with respiratory failure," compared to people with other blood types, the scientists found, reported Medical Xpress. People with Type O blood had a 35% lower risk of becoming infected and seriously ill as people with other blood types.

Dr. Robert Glatter, a New York City emergency medicine physician at Lenox Hill Hospital, explained how the genes that control blood type also play a role in the makeup of the surface of cells. He said that changes in cell-surface structure due to blood type could influence the vulnerability of the cell to be infected by the new coronavirus, reported Medical Xpress.

Type O blood cells are better able to recognize certain proteins as foreign and dangerous, and that may extend to proteins on virus surfaces, Dr. Parameswaran Hari, a blood specialist at the Medical College of Wisconsin, told KRON4.

Still, the researchers cannot say if blood type is a direct cause of the differences in susceptibility, noting that the genetic changes that affect someone's risk could also just happen to be linked with blood type, reported CNN.

The study doesn't prove the linkage but confirms a prior report from China of the blood type/disease severity connection, KRON4 reported. Hari said that the findings from China, which were the "first observation of an association" between blood type and COVID-19 susceptibility, were "crude" and limited because they studied only 2,173 patients but that the new European study seems to validate those findings. With the new work, "Now I believe it," he said. "It could be very important," reported KRON4.

One additional study from April, spearheaded by genetic testing company 23andMe, similarly found blood Type O to be more "protective" against COVID-19 susceptibility and severity. The company surveyed customers, eliciting 800,000 responses, including 12,000 COVID-19 patients.

"Our preliminary data shows that O is protective not just for susceptibility but also how severe the disease is," Dr. Anjali Shastri, a researcher with 23andMe, told NBC Miami.

Shastri also told NBC Miami that Type O blood remains "protective" even when controlling for race, sex and age, factors that have previously been linked to coronavirus vulnerability.

Scientists in all the studies cautioned that the findings were still preliminary and urged other scientists to see if they find the same links with additional patient verifications, reported KRON4.

Blood type has been tied to susceptibility and severity in other infectious diseases, including, most notably, SARS, a genetic cousin of the coronavirus. During the SARS outbreak, Type O blood also reduced the severity of symptoms, Hari told KRON4. Blood type also affects the severity of cholera, recurrent urinary tract infections from E. coli, and a bug called H. pylori that can cause ulcers and stomach cancer, reported KRON4.

Researchers hope the findings will prove useful for designing drugs or vaccines against coronavirus, reported CNN.

EcoWatch Daily Newsletter

A bald eagle flies over Lake Michigan. KURJANPHOTO / iStock / Getty Images Plus

A Michigan bald eagle proved that nature can still triumph over machines when it attacked and drowned a nearly $1,000 government drone.

Read More Show Less
The peloton ride passes through fire-ravaged Fox Creek Road in Adelaide Hills, South Australia, during the Tour Down Under cycling event on January 23, 2020. Brenton Edwards / AFP / Getty Images

A professional cycling race in Australia is under attack for its connections to a major oil and gas producer, the Guardian reports.

Read More Show Less
UQ study lead Francisca Ribeiro inspects oysters. The study of five different seafoods revealed plastic in every sample. University of Queensland

A new study of five different kinds of seafood revealed traces of plastic in every sample tested.

Read More Show Less
Cottongrass blows in the wind at the edge of Etivlik Lake, Alaska. Western Arctic National Parklands / Wikimedia Commons / CC by 2.0

By Tara Lohan

Warming temperatures on land and in the water are already forcing many species to seek out more hospitable environments. Atlantic mackerel are swimming farther north; mountain-dwelling pikas are moving upslope; some migratory birds are altering the timing of their flights.

Numerous studies have tracked these shifting ranges, looked at the importance of wildlife corridors to protect these migrations, and identified climate refugia where some species may find a safer climatic haven.

"There's a huge amount of scientific literature about where species will have to move as the climate warms," says U.C. Berkeley biogeographer Matthew Kling. "But there hasn't been much work in terms of actually thinking about how they're going to get there — at least not when it comes to wind-dispersed plants."

Kling and David Ackerly, professor and dean of the College of Natural Resources at U.C. Berkeley, have taken a stab at filling this knowledge gap. Their recent study, published in Nature Climate Change, looks at the vulnerability of wind-dispersed species to climate change.

It's an important field of research, because while a fish can more easily swim toward colder waters, a tree may find its wind-blown seeds landing in places and conditions where they're not adapted to grow.

Kling is careful to point out that the researchers weren't asking how climate change was going to change wind; other research suggests there likely won't be big shifts in global wind patterns.

Instead the study involved exploring those wind patterns — including direction, speed and variability — across the globe. The wind data was then integrated with data on climate variation to build models trying to predict vulnerability patterns showing where wind may either help or hinder biodiversity from responding to climate change.

One of the study's findings was that wind-dispersed or wind-pollinated trees in the tropics and on the windward sides of mountain ranges are more likely to be vulnerable, since the wind isn't likely to move those dispersers in the right direction for a climate-friendly environment.

The researchers also looked specifically at lodgepole pines, a species that's both wind-dispersed and wind-pollinated.

They found that populations of lodgepole pines that already grow along the warmer and drier edges of the species' current range could very well be under threat due to rising temperatures and related climate alterations.

"As temperature increases, we need to think about how the genes that are evolved to tolerate drought and heat are going to get to the portions of the species' range that are going to be getting drier and hotter," says Kling. "So that's what we were able to take a stab at predicting and estimating with these wind models — which populations are mostly likely to receive those beneficial genes in the future."

That's important, he says, because wind-dispersed species like pines, willows and poplars are often keystone species whole ecosystems depend upon — especially in temperate and boreal forests.

And there are even more plants that rely on pollen dispersal by wind.

"That's going to be important for moving genes from the warmer parts of a species' range to the cooler parts of the species' range," he says. "This is not just about species' ranges shifting, but also genetic changes within species."

Kling says this line of research is just beginning, and much more needs to be done to test these models in the field. But there could be important conservation-related benefits to that work.

"All these species and genes need to migrate long distances and we can be thinking more about habitat connectivity and the vulnerability of these systems," he says.

The more we learn, the more we may be able to do to help species adapt.

"The idea is that there will be some landscapes where the wind is likely to help these systems naturally adapt to climate change without much intervention, and other places where land managers might really need to intervene," he says. "That could involve using assisted migration or assisted gene flow to actually get in there, moving seeds or planting trees to help them keep up with rapid climate change."


Tara Lohan is deputy editor of The Revelator and has worked for more than a decade as a digital editor and environmental journalist focused on the intersections of energy, water and climate. Her work has been published by The Nation, American Prospect, High Country News, Grist, Pacific Standard and others. She is the editor of two books on the global water crisis. http://twitter.com/TaraLohan

Reposted with permission from The Revelator.

An illustration depicts the extinct woolly rhino. Heinrich Harder / Wikimedia Commons

The last Ice Age eliminated some giant mammals, like the woolly rhino. Conventional thinking initially attributed their extinction to hunting. While overhunting may have contributed, a new study pinpointed a different reason for the woolly rhinos' extinction: climate change.

The last of the woolly rhinos went extinct in Siberia nearly 14,000 years ago, just when the Earth's climate began changing from its frozen conditions to something warmer, wetter and less favorable to the large land mammal. DNA tests conducted by scientists on 14 well-preserved rhinos point to rapid warming as the culprit, CNN reported.

"Humans are well known to alter their environment and so the assumption is that if it was a large animal it would have been useful to people as food and that must have caused its demise," says Edana Lord, a graduate student at the Center for Paleogenetics in Stockholm, Sweden, and co-first author of the paper, Smithsonian Magazine reported. "But our findings highlight the role of rapid climate change in the woolly rhino's extinction."

The study, published in Current Biology, notes that the rhino population stayed fairly consistent for tens of thousands of years until 18,500 years ago. That means that people and rhinos lived together in Northern Siberia for roughly 13,000 years before rhinos went extinct, Science News reported.

The findings are an ominous harbinger for large species during the current climate crisis. As EcoWatch reported, nearly 1,000 species are expected to go extinct within the next 100 years due to their inability to adapt to a rapidly changing climate. Tigers, eagles and rhinos are especially vulnerable.

The difference between now and the phenomenon 14,000 years ago is that human activity is directly responsible for the current climate crisis.

To figure out the cause of the woolly rhinos' extinction, scientists examined DNA from different rhinos across Siberia. The tissue, bone and hair samples allowed them to deduce the population size and diversity for tens of thousands of years prior to extinction, CNN reported.

Researchers spent years exploring the Siberian permafrost to find enough samples. Then they had to look for pristine genetic material, Smithsonian Magazine reported.

It turns out the wooly rhinos actually thrived as they lived alongside humans.

"It was initially thought that humans appeared in northeastern Siberia fourteen or fifteen thousand years ago, around when the woolly rhinoceros went extinct. But recently, there have been several discoveries of much older human occupation sites, the most famous of which is around thirty thousand years old," senior author Love Dalén, a professor of evolutionary genetics at the Center for Paleogenetics, said in a press release.

"This paper shows that woolly rhino coexisted with people for millennia without any significant impact on their population," Grant Zazula, a paleontologist for Canada's Yukon territory and Simon Fraser University who was not involved in the research, told Smithsonian Magazine. "Then all of a sudden the climate changed and they went extinct."

A large patch of leaked oil and the vessel MV Wakashio near Blue Bay Marine Park off the coast of southeast Mauritius on Aug. 6, 2020. AFP via Getty Images

The environmental disaster that Mauritius is facing is starting to appear as its pristine waters turn black, its fish wash up dead, and its sea birds are unable to take flight, as they are limp under the weight of the fuel covering them. For all the damage to the centuries-old coral that surrounds the tiny island nation in the Indian Ocean, scientists are realizing that the damage could have been much worse and there are broad lessons for the shipping industry, according to Al Jazeera.

Read More Show Less

Trending

A quality engineer examines new solar panels in a factory. alvarez / Getty Images

Transitioning to renewable energy can help reduce global warming, and Jennie Stephens of Northeastern University says it can also drive social change.

For example, she says that locally owned businesses can lead the local clean energy economy and create new jobs in underserved communities.

"We really need to think about … connecting climate and energy with other issues that people wake up every day really worried about," she says, "whether it be jobs, housing, transportation, health and well-being."

To maximize that potential, she says the energy sector must have more women and people of color in positions of influence. Research shows that leadership in the solar industry, for example, is currently dominated by white men.

"I think that a more inclusive, diverse leadership is essential to be able to effectively make these connections," Stephens says. "Diversity is not just about who people are and their identity, but the ideas and the priorities and the approaches and the lens that they bring to the world."

So she says by elevating diverse voices, organizations can better connect the climate benefits of clean energy with social and economic transformation.

Reposted with permission from Yale Climate Connections.