Coastal Flooding X-Factor: Natural Climate Patterns Create Hot Spots of Rapid Sea Level Rise
By Arnoldo Valle-Levinson and Andrea Dutton
For Americans who live along the east and Gulf of Mexico coasts, the end of the 2017 Atlantic hurricane season on Nov. 30 was a relief. This year forecasters recorded 17 named storms, 10 of which became hurricanes. Six were major hurricanes (Category 3 or stronger), and three made landfall: Harvey in Texas, Irma in the Caribbean and Florida, and Maria in the Caribbean and Puerto Rico. It was the most costly season ever, inflicting more than $200 billion in damages.
Many scientists have found evidence that climate change is amplifying the impacts of hurricanes. For example, several studies just published this month conclude that human-induced climate change made rainfall during Hurricane Harvey more intense. But climate change is not the only factor making hurricanes more damaging.
In a study we co-authored with our colleague Jon Martin, we showed that two converging natural climate processes created a "hot spot" from Cape Hatteras, North Carolina to Miami where sea levels rose six times faster than the global average between 2011 and 2015. We also showed that such hot spots have occurred at other points along the Eastern Seaboard over the past century. Now we see indications that one is developing in Texas and Louisiana, where it likely amplified flooding during Harvey—and could make future coastal storms more damaging.
Nearly every site measured has experienced an increase in coastal flooding since the 1950s. The rate is accelerating in many locations along the east and Gulf coasts.EPA
Solving a salinity puzzle
Our work started when Jon Martin showed one of us (Arnoldo) salinity data from water trapped between sediments lining the floor of the Indian River Lagoon in east Central Florida. Here groundwater with zero salinity pools along the coast behind several barrier islands. Jon and his research team were analyzing changes in water chemistry and found that salinity had increased dramatically over the preceding decade. This suggested that saltwater was rapidly intruding into the lagoon.
This process is typically driven either by sea level rise or humans pumping fresh water from underground, or some combination of the two. Arnoldo consulted online data from the National Oceanic and Atmospheric Administration, and found that sea level rise had accelerated rapidly at nearby Trident Pier between 2011 and 2015. While global sea level has been rising at an average pace of about 1 foot per century, this site had recorded an increase of about 5 inches in a mere five years.
When Arnoldo shared this finding with Andrea, an international expert in past sea level rise, she was floored. These rates were ten times higher than the long-term rates of sea level rise along the Florida coastline. Further investigation showed that all tide gauges south of Cape Hatteras showed a similar uptick over the same period. This raised two questions: Had similar rates of rapid sea level rise previously been observed in the southeast U.S.? And what was causing this temporary acceleration?
Stations with positive sea level trends (yellow-to-red) are experiencing both global sea level rise and lowering or sinking of the local land. Stations illustrated with negative trends (blue-to-purple) are experiencing global sea level rise and a greater vertical rise in the local land.NOAA
Converging climate patterns
Previous work along the Atlantic coast had identified the area north of Cape Hatteras as vulnerable to accelerated rates of sea level rise, particularly in the context of climate change. Warming of the planet is expected to weaken the Gulf Stream, a powerful Atlantic Ocean current that pulls water away from the east coast and carries it northward. Slowing down the Gulf Stream leaves more water in place along the coastline, raising sea levels.
But this mechanism could not explain a jump of this magnitude in sea levels south of the Cape. Another previous study offered an additional clue. It proposed that the North Atlantic Oscillation (NAO), a seesaw pattern in air pressure over different regions of the North Atlantic Ocean, could explain the shift in the position of short-term variations in sea level rise.
Shifts in the NAO alter the position of the jet stream, wind patterns and storm tracks, all of which affect the distribution of water in the North Atlantic basin. Ultimately, the cumulative effects of NAO on the ocean determine whether water will pile up to the north or south of Cape Hatteras. Thus, water piled up preferentially to the north of Cape Hatteras in the period 2009-2010, and to the south from 2011 to 2015.
When the NAO is in its positive phase (left), the contrast between high pressure over the Azores and low pressure in the far north Atlantic is stronger than normal, which leads to mild storms over northern Europe and drying over the Mediterranean. UCAR, CC BY-ND
This NAO-related mechanism explained where sea level accelerations might occur along the Atlantic coast, but did not seem to explain their timing. We filled in the blanks by examining tide gauge records over the last century along the entire U.S. Atlantic coast. This review showed that the timing of short-term sea level accelerations, lasting one to several years, was correlated with the accumulated signal of another recurring climate pattern: The El Niño Southern Oscillation, or ENSO, which is the result of an oscillation of atmospheric pressure in the Tropical Pacific Ocean basin.
Although ENSO occurs in the Pacific, its effects propagate across North America, altering air temperatures and wind regimes in the eastern U.S. These changes in wind distributions can affect water transport in the North Atlantic Ocean, causing it to build up along the Eastern Seaboard at times. Other scientists have shown that this transport ultimately determines the timing of short-term accelerations in sea-level rise along the Atlantic coast.
In summary, we found that short-term accelerations in sea level rise have repeatedly occurred over the last century, sometimes occurring south of Cape Hatteras and sometimes focused north of the Cape. These hot spots can exceed rates of 4 inches in five years, and can occur anywhere along the U.S. Atlantic coast. They form when the accumulated signals of ENSO and the NAO converge, displacing seawater toward the coastline.
A wild card for coastal flooding
Our research has serious implications for coastal planners. Global warming is raising sea levels along the entire Atlantic coast, and communities should be preparing for it. In addition, our findings show that sea level can rise and fall around this level by more than 4 inches over a five-year period, due to variability in ocean-atmosphere interactions in the Pacific and Atlantic ocean basins. This variability can occur over the course of five to 10 years.
These hot spots amplify the severity of coastal flooding that is already occurring from storms and king tides. Residents between Charleston, South Carolina and Jacksonville, Florida—a stretch where sea levels are at least 4 inches (10 centimeters) higher now than they were in 2010—have found this out the hard way.
Now we are looking at data from the Gulf of Mexico, where tide stations are also showing water levels which are typically higher than predicted. The increase along Florida's Gulf coast is past its peak, but Texas and Louisiana are still seeing an acceleration in sea level rise. Accelerations in sea level rise are hard to predict, and it is unclear whether they will become more serious over time. But they make it even more urgent for coastal communities to take sea level rise seriously today.
Reposted with permission from our media associate The Conversation.
New fossils uncovered in Argentina may belong to one of the largest animals to have walked on Earth.
- Groundbreaking Fossil Shows Prehistoric 15-Foot Reptile Tried to ... ›
- Skull of Smallest Known Dinosaur Found in 99-Million-Year Old Amber ›
- Giant 'Toothed' Birds Flew Over Antarctica 40 Million Years Ago ... ›
- World's Second-Largest Egg Found in Antarctica Probably Hatched ... ›
EcoWatch Daily Newsletter
A federal court on Tuesday struck down the Trump administration's rollback of the Obama-era Clean Power Plan regulating greenhouse gas emissions from power plants.
- Pruitt Guts the Clean Power Plan: How Weak Will the New EPA ... ›
- It's Official: Trump Administration to Repeal Clean Power Plan ... ›
- 'Deadly' Clean Power Plan Replacement ›
Trending
By Jonathan Runstadler and Kaitlin Sawatzki
Over the course of the COVID-19 pandemic, researchers have found coronavirus infections in pet cats and dogs and in multiple zoo animals, including big cats and gorillas. These infections have even happened when staff were using personal protective equipment.
Gorillas have been affected by human viruses in the past and are susceptible to the coronavirus. Thomas Fuhrmann via Wikimedia Commons, CC BY-SA
- Gorillas in San Diego Test Positive for Coronavirus - EcoWatch ›
- Wildlife Rehabilitators Are Overwhelmed During the Pandemic. In ... ›
- Coronavirus Pandemic Linked to Destruction of Wildlife and World's ... ›
- Utah Mink Becomes First Wild Animal to Test Positive for Coronavirus ›
By Peter Giger
The speed and scale of the response to COVID-19 by governments, businesses and individuals seems to provide hope that we can react to the climate change crisis in a similarly decisive manner - but history tells us that humans do not react to slow-moving and distant threats.
A Game of Jenga
<p>Think of it as a game of Jenga and the planet's climate system as the tower. For generations, we have been slowly removing blocks. But at some point, we will remove a pivotal block, such as the collapse of one of the major global ocean circulation systems, for example the Atlantic Meridional Overturning Circulation (AMOC), that will cause all or part of the global climate system to fall into a planetary emergency.</p><p>But worse still, it could cause runaway damage: Where the tipping points form a domino-like cascade, where breaching one triggers breaches of others, creating an unstoppable shift to a radically and swiftly changing climate.</p><p>One of the most concerning tipping points is mass methane release. Methane can be found in deep freeze storage within permafrost and at the bottom of the deepest oceans in the form of methane hydrates. But rising sea and air temperatures are beginning to thaw these stores of methane.</p><p>This would release a powerful greenhouse gas into the atmosphere, 30-times more potent than carbon dioxide as a global warming agent. This would drastically increase temperatures and rush us towards the breach of other tipping points.</p><p>This could include the acceleration of ice thaw on all three of the globe's large, land-based ice sheets – Greenland, West Antarctica and the Wilkes Basin in East Antarctica. The potential collapse of the West Antarctic ice sheet is seen as a key tipping point, as its loss could eventually <a href="https://science.sciencemag.org/content/324/5929/901" target="_blank">raise global sea levels by 3.3 meters</a> with important regional variations.</p><p>More than that, we would be on the irreversible path to full land-ice melt, causing sea levels to rise by up to 30 meters, roughly at the rate of two meters per century, or maybe faster. Just look at the raised beaches around the world, at the last high stand of global sea level, at the end of the Pleistocene period around 120,0000 years ago, to see the evidence of such a warm world, which was just 2°C warmer than the present day.</p>Cutting Off Circulation
<p>As well as devastating low-lying and coastal areas around the world, melting polar ice could set off another tipping point: a disablement to the AMOC.</p><p>This circulation system drives a northward flow of warm, salty water on the upper layers of the ocean from the tropics to the northeast Atlantic region, and a southward flow of cold water deep in the ocean.</p><p>The ocean conveyor belt has a major effect on the climate, seasonal cycles and temperature in western and northern Europe. It means the region is warmer than other areas of similar latitude.</p><p>But melting ice from the Greenland ice sheet could threaten the AMOC system. It would dilute the salty sea water in the north Atlantic, making the water lighter and less able or unable to sink. This would slow the engine that drives this ocean circulation.</p><p><a href="https://www.carbonbrief.org/atlantic-conveyor-belt-has-slowed-15-per-cent-since-mid-twentieth-century" target="_blank">Recent research</a> suggests the AMOC has already weakened by around 15% since the middle of the 20th century. If this continues, it could have a major impact on the climate of the northern hemisphere, but particularly Europe. It may even lead to the <a href="https://ore.exeter.ac.uk/repository/handle/10871/39731?show=full" target="_blank" rel="noopener noreferrer">cessation of arable farming</a> in the UK, for instance.</p><p>It may also reduce rainfall over the Amazon basin, impact the monsoon systems in Asia and, by bringing warm waters into the Southern Ocean, further destabilize ice in Antarctica and accelerate global sea level rise.</p>The Atlantic Meridional Overturning Circulation has a major effect on the climate. Praetorius (2018)
Is it Time to Declare a Climate Emergency?
<p>At what stage, and at what rise in global temperatures, will these tipping points be reached? No one is entirely sure. It may take centuries, millennia or it could be imminent.</p><p>But as COVID-19 taught us, we need to prepare for the expected. We were aware of the risk of a pandemic. We also knew that we were not sufficiently prepared. But we didn't act in a meaningful manner. Thankfully, we have been able to fast-track the production of vaccines to combat COVID-19. But there is no vaccine for climate change once we have passed these tipping points.</p><p><a href="https://www.weforum.org/reports/the-global-risks-report-2021" target="_blank">We need to act now on our climate</a>. Act like these tipping points are imminent. And stop thinking of climate change as a slow-moving, long-term threat that enables us to kick the problem down the road and let future generations deal with it. We must take immediate action to reduce global warming and fulfill our commitments to the <a href="https://www.ipcc.ch/sr15/" target="_blank" rel="noopener noreferrer">Paris Agreement</a>, and build resilience with these tipping points in mind.</p><p>We need to plan now to mitigate greenhouse gas emissions, but we also need to plan for the impacts, such as the ability to feed everyone on the planet, develop plans to manage flood risk, as well as manage the social and geopolitical impacts of human migrations that will be a consequence of fight or flight decisions.</p><p>Breaching these tipping points would be cataclysmic and potentially far more devastating than COVID-19. Some may not enjoy hearing these messages, or consider them to be in the realm of science fiction. But if it injects a sense of urgency to make us respond to climate change like we have done to the pandemic, then we must talk more about what has happened before and will happen again.</p><p>Otherwise we will continue playing Jenga with our planet. And ultimately, there will only be one loser – us.</p>By John R. Platt
The period of the 45th presidency will go down as dark days for the United States — not just for the violent insurgency and impeachment that capped off Donald Trump's four years in office, but for every regressive action that came before.
- Biden Announces $2 Trillion Climate and Green Recovery Plan ... ›
- How Biden and Kerry Can Rebuild America's Climate Leadership ... ›
- Biden's EPA Pick Michael Regan Urged to Address Environmental ... ›
- How Joe Biden's Climate Plan Compares to the Green New Deal ... ›