Quantcast
Environmental News for a Healthier Planet and Life

Climate Change May Bring Big Trouble to Big Bluestems (and the Cattle That Love Them)

Climate
Konza Prairie, Kansas. Vincent Parsons / Flickr

By Susan Cosier

Loretta Johnson tortures plants. She sets them in awkward positions, deprives them of water or gives them too much, then watches how they react. Her victims are tall grasses—big bluestems, specifically, an icon of the midwestern prairie. Johnson isn't tormenting the plants for kicks; she's investigating how they fare under different climatic conditions. And so far, her observations provide clues to how the Great Plains could change within the next century.


Climate models show that warmer temperatures will likely continue to shift north over the next 75 years. Rainfall patterns are also expected to change, with portions of the big bluestem's midwestern range likely becoming drier for at least part of the year.

Big bluestems, which grow throughout nearly all of the U.S., make up 70 percent of the Midwest's tallgrass prairie. How these grasses grow, however, varies quite a bit by region. In drier areas, like eastern Colorado, the plants are short and stumpy. In the wetter eastern Midwest, such as Illinois and parts of Kansas, they reach up to nine feet tall. But no matter where big bluestem grows, cattle love to eat it—and if the grass stops thriving in certain places, ranchers could feel it in their wallets.

Grass seed.Reigh LeBlanc / Flickr

For the past seven years, Johnson, a professor in Kansas State University's division of biology and a codirector of the school's Ecological Genomics Institute, has belonged to a research team whose members hail from a number of states and scientific disciplines, including botany and climatology. To get a handle on what a changing climate might mean for the big bluestem, the scientists collected seeds from pristine prairies (those not degraded by agriculture or mining) in regions with various rainfall patterns. They then planted the seeds in three gardens—a wet locale in Illinois, a wet area in Kansas, and a dry area in Kansas—to test how the grasses might adapt under different conditions.

Interestingly, when these big bluestems grew, they did so exactly the way they would have in their home prairies. No matter how much rain, sunlight or wind (or the types of grasses growing around them), they didn't change. The regional differences between the plants, it appears, are genetic. The grasses may belong to the same species, but they represent what scientists call different ecotypes.

Jersey cattle near Baraboo.Wisconsin Department of Natural Resources

And that could be bad news for cattle ranchers. According to Bruce Anderson, an agronomy professor at the University of Nebraska–Lincoln who has studied cattle and foraging grasses for 35 years, good bluestem land can feed more livestock than other types of land. He said grazing cattle on these plants, which grow well in the summer months, instead of solely on grasses that thrive in the spring, can result in a 20 percent to 25 percent increase in how many animals can feed off the land. If weather conditions change to no longer match the needs of the big bluestems that sustain cattle in an area, those plants would be less productive, which could then affect cattle operations.

We don't know exactly how climate change's impacts on big bluestems might, in turn, influence cattle production, said Melinda Smith, director of the Semi-arid Grassland Research Center at Colorado State University (she is not a member of Johnson's research team). But we do know that changing climate conditions will alter what grasses thrive on the plains.

Take Kansas, for example, where ranchers operate on a third of the land. The state is home to the bluestem pasture region, one of the largest remaining swaths of tallgrass prairie. Smith's research here shows that forbs, which cattle don't like as much, replace grasses during an extreme drought. The bluestems stop growing, but they don't die out (like trees do under similar situations). When and if the rain finally returns, the bluestems come right back, showing resilience.

Researchers are now considering how best to preserve those bluegrass ecotypes that are expected to face soggier or drier seasons. Big bluestems can survive as long as 20 years, but reproducing during that time under suboptimal conditions is not guaranteed. They may release seeds into the wind, but the seeds may not be able to drift far enough to reach an area where conditions are more hospitable. Human intervention may be required.

Big bluestem grass.Matt Lavin / Flickr

Johnson and Sara Baer, a soil and grassland ecologist from Southern Illinois University, are looking into moving big bluestems to different locales but say the idea of doing so raises questions about the species' future genetic diversity and its ability to mix certain ecotypes. Because the grasses' traits are so regionally specific, they flower at different times. "Their timing is off by, like, a month," said Johnson, and that may prevent them from interbreeding. Plus, the plants (or their hybrids) may not grow as well in their new homes, which could change the quality and quantity of plant material available to cattle.

Transporting certain types of big bluestem to new regions also raises questions of where exactly to put them. After all, just 4 percent of the original tallgrass prairie remains. (Less than 1 percent is left of Illinois's historically expansive prairie).

Baer, who has focused on prairie restoration for 20 years, says that small plots of restored prairie exist all over, and that making them more biologically diverse is important. If we plant grasses that can survive the changing conditions, more plant species—and their genetically different ecotypes—just may thrive. Then, she said, we can connect remnant prairies with those that have been restored, creating corridors where the grasses can disperse. That would be ideal.

In the meantime, Baer, Johnson and the rest of the team plan to dig deeper into bluestem's genetic differences and potential climate scenarios. Sorry, bluestems—it's time for a little more torture...

EcoWatch Daily Newsletter

Moroccan patients who recovered from the novel coronavirus disease celebrate with medical staff as they leave the hospital in Sale, Morocco, on April 3, 2020. AFP / Getty Images

By Tom Duszynski

The coronavirus is certainly scary, but despite the constant reporting on total cases and a climbing death toll, the reality is that the vast majority of people who come down with COVID-19 survive it. Just as the number of cases grows, so does another number: those who have recovered.

In mid-March, the number of patients in the U.S. who had officially recovered from the virus was close to zero. That number is now in the tens of thousands and is climbing every day. But recovering from COVID-19 is more complicated than simply feeling better. Recovery involves biology, epidemiology and a little bit of bureaucracy too.

Read More Show Less
Reef scene with crinoid and fish in the Great Barrier Reef, Australia. Reinhard Dirscherl / ullstein bild / Getty Images

By Elizabeth Claire Alberts

The future for the world's oceans often looks grim. Fisheries are set to collapse by 2048, according to one study, and 8 million tons of plastic pollute the ocean every year, causing considerable damage to delicate marine ecosystems. Yet a new study in Nature offers an alternative, and more optimistic view on the ocean's future: it asserts that the entire marine environment could be substantially rebuilt by 2050, if humanity is able to step up to the challenge.

Read More Show Less
Sponsored
A daughter touches her father's head while saying goodbye as medics prepare to transport him to Stamford Hospital on April 02, 2020 in Stamford, Connecticut. He had multiple COVID-19 symptoms. John Moore / Getty Images

Across the country, the novel coronavirus is severely affecting black people at much higher rates than whites, according to data released by several states, as The New York Times reported.

Read More Show Less
Four rolls of sourdough bread are arranged on a surface. Photo by Laura Chase de Formigny and food styling by Lisa Cherkasky for The Washington Post / Getty Images

By Zulfikar Abbany

Bread has been a source of basic nutrition for centuries, the holy trinity being wheat, maize and rice. It has also been the reason for a lot of innovation in science and technology, from millstones to microbiological investigations into a family of single-cell fungi called Saccharomyces.

Read More Show Less

Trending

A coral reef in Egypt's Red Sea. Tropical ocean ecosystems could see sudden biodiversity losses this decade if emissions are not reduced. Georgette Douwma / Stone / Getty Images

The biodiversity loss caused by the climate crisis will be sudden and swift, and could begin before 2030.

Read More Show Less