
By Hao Tan, Elizabeth Thurbon, John Mathews, Sung-Young Kim
China's President Xi Jinping surprised the global community recently by committing his country to net-zero emissions by 2060. Prior to this announcement, the prospect of becoming "carbon neutral" barely rated a mention in China's national policies.
China currently accounts for about 28% of global carbon emissions – double the U.S. contribution and three times the European Union's. Meeting the pledge will demand a deep transition of not just China's energy system, but its entire economy.
Importantly, China's use of coal, oil and gas must be slashed, and its industrial production stripped of emissions. This will affect demand for Australia's exports in coming decades.
It remains to be seen whether China's climate promise is genuine, or simply a ploy to win international favor. But it puts pressure on many other nations – not least Australia – to follow.
Goodbye, Fossil Fuels
Coal is currently used to generate about 60% of China's electricity. Coal must be phased out for China to meet its climate target, unless technologies such as carbon-capture and storage become commercially viable.
Natural gas is increasingly used in China for heating and transport, as an alternative to coal and petrol. To achieve carbon neutrality, China must dramatically reduce its gas use.
Electric vehicles and hydrogen fuel-cell vehicles must also come to dominate road transport - currently they account for less than 2% of the total fleet.
China must also slash the production of carbon-intensive steel, cement and chemicals, unless they can be powered by renewable electricity or zero-emissions hydrogen. One report suggests meeting the target will mean most of China's steel is produced using recycled steel, in a process powered by renewable electricity.
Modeling in that report suggests China's use of iron ore – and the coking coal required to process it into steel – will decrease by 75%. The implications for Australia's mining industry would be huge; around 80% of our iron ore is exported to China.
It is critically important for Australian industries and policymakers to assess the seriousness of China's pledge and the likelihood it will be delivered. Investment plans for large mining projects should then be reconsidered accordingly.
Conversely, China's path towards a carbon neutral economy may open up new export opportunities for Australia, such as "green" hydrogen.
A Renewables Revolution
Solar and wind currently account for 10% of China's total power generation. For China to meet the net-zero goal, renewable energy generation would have to ramp up dramatically. This is needed for two reasons: to replace the lost coal-fired power capacity, and to provide the larger electricity needs of transport and heavy industry.
Two factors are likely to reduce energy demand in China in coming years. First, energy efficiency in the building, transport and manufacturing sectors is likely to improve. Second, the economy is moving away from energy- and pollution-intensive production, towards an economy based on services and digital technologies.
It's in China's interests to take greater action on climate change. Developing renewable energy helps China build new "green" export industries, secure its energy supplies and improve air and water quality.
The Global Picture
It's worth considering what factors may have motivated China's announcement, beyond the desire to do good for the climate.
In recent years, China has been viewed with increasing hostility on the world stage, especially by Western nations. Some commentators have suggested China's climate pledge is a bid to improve its global image.
The pledge also gives China the high ground over a major antagonist, the US, which under President Donald Trump has walked away from its international obligations on climate action. China's pledge follows similar ones by the European Union, New Zealand, California and others. It sets an example for other developing nations to follow, and puts pressure on Australia to do the same.
The European Union has also been urging China to take stronger climate action. The fact Xi made the net-zero pledge at a United Nations meeting suggests it was largely targeted at an international, rather than Chinese, audience.
However, the international community will judge China's pledge on how quickly it can implement specific, measurable short- and mid-term targets for net-zero emissions, and whether it has the policies in place to ensure the goal is delivered by 2060.
Much is resting on China's next Five Year Plan – a policy blueprint created every five years to steer the economy towards various priorities. The latest plan, covering 2021–25, is being developed. It will be examined closely for measures such as phasing out coal and more ambitious targets for renewables.
Also key is whether the recent rebound of China's carbon emissions – following a fall from 2013 to 2016 – can be reversed.
Wriggle Room
The 2060 commitment is bold, but China may look to leave itself wriggle room in several ways.
First, Xi declared in his speech that China will "aim to" achieve carbon neutrality, leaving open the option his nation may not meet the target.
Second, the Paris Agreement states that developed nations should provide financial resources and technological support to help developing countries reduce their emissions. China may make its delivery of the pledge conditional on this support.
Third, China may seek to game the way carbon neutrality is measured – for example, by insisting it excludes carbon emissions "embodied" in imports and exports. This move is quite likely, given exports account for a significant share of China's total greenhouse gas emissions.
So for the time being, the world is holding its applause for China's commitment to carbon neutrality. Like every nation, China will be judged not on its climate promises, but on its delivery.
Hao Tan is an Associate professor, University of Newcastle.
Elizabeth Thurbon is a Scientia Fellow and Associate Professor in International Relations / International Political Economy, UNSW.
John Mathews is a Professor Emeritus, Macquarie Business School, Macquarie University.
Sung-Young Kim is a Senior Lecturer in International Relations, Discipline of Politics & International Relations, Macquarie School of Social Sciences, Macquarie University.
Hao Tan receives funding from the Australia Research Council (ARC) Discovery Project 2019-2021. He previously received funding from the Academy of the Social Sciences in Australia, and funding from the Confucius Institute Headquarters under the "Understanding China Fellowship" in 2017.
Elizabeth Thurbon currently receives funding from the Australian Research Council (ARC) and the Academy of Korean Studies. She has previously received funding from the Academy of Social Sciences in Australia and the Korea Foundation. She is an elected member of the Executive Council of the Society for the Advancement of Socio-Economics (SASE) and a Research Committee member and Board member of the Jubilee Australia Research Centre (JARC).
John Mathews receives funding from the ARC for the study of the clean energy transition in East Asia.
Sung-Young Kim receives funding from the Australia Research Council (ARC) and has previously received funding from the Academy of Korean Studies (AKS). He is Chair of the Organising Committee for the 2021 Australian Political Studies Association (APSA) Annual Conference and is Treasurer of the Korean Studies Association of Australasia (KSAA).
Reposted with permission from The Conversation.
- China and California Sign Renewables Deal, Bypassing Trump's ... ›
- U.S. and China Strike Historic Climate Change Deal - EcoWatch ›
- Climate Change Damage in China Could Harm U.S. Economy ... ›
- 5 Years After Paris: How Countries’ Climate Policies Match up to Their Promises - EcoWatch ›
In 2010, world leaders agreed to 20 targets to protect Earth's biodiversity over the next decade. By 2020, none of them had been met. Now, the question is whether the world can do any better once new targets are set during the meeting of the UN Convention on Biodiversity in Kunming, China later this year.
- Ocean Scientists Create Global Network to Help Save Biodiversity ... ›
- 5 Reasons Why Biodiversity Matters - EcoWatch ›
- 26 Organizations Working to Conserve Seed Biodiversity - EcoWatch ›
- The Top 10 Ocean Biodiversity Hotspots to Protect - EcoWatch ›
- New Platform Shows How to Protect Biodiversity and Save Planet ... ›
- These Scientists Are Listening to the Borneo Rainforest to Protect ... ›
EcoWatch Daily Newsletter
By Andrew Rosenberg
The first 24 hours of the administration of President Joe Biden were filled not only with ceremony, but also with real action. Executive orders and other directives were quickly signed. More actions have followed. All consequential. Many provide a basis for not just undoing actions of the previous administration, but also making real advances in public policy to protect public health, safety, and the environment.
- Here Are Biden's Day One Actions on Climate and Environment ... ›
- UCS Offers Science Advice for Biden Administration - EcoWatch ›
Trending
A first-of-its-kind study has examined the satellite record to see how the climate crisis is impacting all of the planet's ice.
- 'Ghost Forests' Are an Eerie Sign of Sea-Level Rise - EcoWatch ›
- Sea-Level Rise Takes Business Toll in North Carolina's Outer Banks ... ›
- Sea Level Rise Is Locked in Even If We Meet Paris Agreement ... ›
A Healthy Microbiome Builds a Strong Immune System That Could Help Defeat COVID-19
By Ana Maldonado-Contreras
Takeaways
- Your gut is home to trillions of bacteria that are vital for keeping you healthy.
- Some of these microbes help to regulate the immune system.
- New research, which has not yet been peer-reviewed, shows the presence of certain bacteria in the gut may reveal which people are more vulnerable to a more severe case of COVID-19.
You may not know it, but you have an army of microbes living inside of you that are essential for fighting off threats, including the virus that causes COVID-19.
How Do Resident Bacteria Keep You Healthy?
<p>Our immune defense is part of a complex biological response against harmful pathogens, such as viruses or bacteria. However, because our bodies are inhabited by trillions of mostly beneficial bacteria, virus and fungi, activation of our immune response is tightly regulated to distinguish between harmful and helpful microbes.</p><p>Our bacteria are spectacular companions diligently helping prime our immune system defenses to combat infections. A seminal study found that mice treated with antibiotics that eliminate bacteria in the gut exhibited an impaired immune response. These animals had low counts of virus-fighting white blood cells, weak antibody responses and poor production of a protein that is vital for <a href="https://doi.org/10.1073/pnas.1019378108" target="_blank">combating viral infection and modulating the immune response</a>.</p><p><a href="https://doi.org/10.1371/journal.pone.0184976" target="_blank" rel="noopener noreferrer">In another study</a>, mice were fed <em>Lactobacillus</em> bacteria, commonly used as probiotic in fermented food. These microbes reduced the severity of influenza infection. The <em>Lactobacillus</em>-treated mice did not lose weight and had only mild lung damage compared with untreated mice. Similarly, others have found that treatment of mice with <em>Lactobacillus</em> protects against different <a href="https://doi.org/10.1038/srep04638" target="_blank" rel="noopener noreferrer">subtypes of</a> <a href="https://doi.org/10.1038/s41598-017-17487-8" target="_blank" rel="noopener noreferrer">influenza</a> <a href="https://doi.org/10.1371/journal.ppat.1008072" target="_blank" rel="noopener noreferrer">virus</a> and human respiratory syncytial virus – the <a href="https://doi.org/10.1038/s41598-019-39602-7" target="_blank" rel="noopener noreferrer">major cause of viral bronchiolitis and pneumonia in children</a>.</p>Chronic Disease and Microbes
<p>Patients with chronic illnesses including Type 2 diabetes, obesity and cardiovascular disease exhibit a hyperactive immune system that fails to recognize a harmless stimulus and is linked to an altered gut microbiome.</p><p>In these chronic diseases, the gut microbiome lacks bacteria that activate <a href="https://doi.org/10.1126/science.1198469" target="_blank" rel="noopener noreferrer">immune cells</a> that block the response against harmless bacteria in our guts. Such alteration of the gut microbiome is also observed in <a href="https://doi.org/10.1073/pnas.1002601107" target="_blank" rel="noopener noreferrer">babies delivered by cesarean section</a>, individuals consuming a poor <a href="https://doi.org/10.1038/nature12820" target="_blank" rel="noopener noreferrer">diet</a> and the <a href="https://doi.org/10.1038/nature11053" target="_blank" rel="noopener noreferrer">elderly</a>.</p><p>In the U.S., 117 million individuals – about half the adult population – <a href="https://health.gov/our-work/food-nutrition/2015-2020-dietary-guidelines/guidelines/" target="_blank" rel="noopener noreferrer">suffer from Type 2 diabetes, obesity, cardiovascular disease or a combination of them</a>. That suggests that half of American adults carry a faulty microbiome army.</p><p>Research in my laboratory focuses on identifying gut bacteria that are critical for creating a balanced immune system, which fights life-threatening bacterial and viral infections, while tolerating the beneficial bacteria in and on us.</p><p>Given that diet affects the diversity of bacteria in the gut, <a href="https://www.umassmed.edu/nutrition/melody-trial-info/" target="_blank" rel="noopener noreferrer">my lab studies show how diet can be used</a> as a therapy for chronic diseases. Using different foods, people can shift their gut microbiome to one that boosts a healthy immune response.</p><p>A fraction of patients infected with SARS-CoV-2, the virus that causes COVID-19 disease, develop severe complications that require hospitalization in intensive care units. What do many of those patients have in common? <a href="https://www.cdc.gov/mmwr/volumes/69/wr/mm6912e2.htm" target="_blank" rel="noopener noreferrer">Old age</a> and chronic diet-related diseases like obesity, Type 2 diabetes and cardiovascular disease.</p><p><a href="http://doi.org/10.1016/j.jada.2008.12.019" target="_blank" rel="noopener noreferrer">Black and Latinx people are disproportionately affected by obesity, Type 2 diabetes and cardiovascular disease</a>, all of which are linked to poor nutrition. Thus, it is not a coincidence that <a href="https://www.cdc.gov/mmwr/volumes/69/wr/mm6933e1.htm" target="_blank" rel="noopener noreferrer">these groups have suffered more deaths from COVID-19</a> compared with whites. This is the case not only in the U.S. but also <a href="https://www.washingtonpost.com/world/europe/blacks-in-britain-are-four-times-as-likely-to-die-of-coronavirus-as-whites-data-show/2020/05/07/2dc76710-9067-11ea-9322-a29e75effc93_story.html" target="_blank" rel="noopener noreferrer">in Britain</a>.</p>Discovering Microbes That Predict COVID-19 Severity
<p>The COVID-19 pandemic has inspired me to shift my research and explore the role of the gut microbiome in the overly aggressive immune response against SARS-CoV-2 infection.</p><p>My colleagues and I have hypothesized that critically ill SARS-CoV-2 patients with conditions like obesity, Type 2 diabetes and cardiovascular disease exhibit an altered gut microbiome that aggravates <a href="https://theconversation.com/exercise-may-help-reduce-risk-of-deadly-covid-19-complication-ards-136922" target="_blank" rel="noopener noreferrer">acute respiratory distress syndrome</a>.</p><p>Acute respiratory distress syndrome, a life-threatening lung injury, in SARS-CoV-2 patients is thought to develop from a <a href="http://doi.org/10.1016/j.cytogfr.2020.05.003" target="_blank" rel="noopener noreferrer">fatal overreaction of the immune response</a> called a <a href="https://theconversation.com/blocking-the-deadly-cytokine-storm-is-a-vital-weapon-for-treating-covid-19-137690" target="_blank" rel="noopener noreferrer">cytokine storm</a> <a href="http://doi.org/10.1016/S2213-2600(20)30216-2" target="_blank" rel="noopener noreferrer">that causes an uncontrolled flood</a> <a href="http://doi.org/10.1016/S2213-2600(20)30216-2" target="_blank" rel="noopener noreferrer">of immune cells into the lungs</a>. In these patients, their own uncontrolled inflammatory immune response, rather than the virus itself, causes the <a href="http://doi.org/10.1007/s00134-020-05991-x" target="_blank" rel="noopener noreferrer">severe lung injury and multiorgan failures</a> that lead to death.</p><p>Several studies <a href="https://doi.org/10.1016/j.trsl.2020.08.004" target="_blank" rel="noopener noreferrer">described in one recent review</a> have identified an altered gut microbiome in patients with COVID-19. However, identification of specific bacteria within the microbiome that could predict COVID-19 severity is lacking.</p><p>To address this question, my colleagues and I recruited COVID-19 hospitalized patients with severe and moderate symptoms. We collected stool and saliva samples to determine whether bacteria within the gut and oral microbiome could predict COVID-19 severity. The identification of microbiome markers that can predict the clinical outcomes of COVID-19 disease is key to help prioritize patients needing urgent treatment.</p><p><a href="https://doi.org/10.1101/2021.01.05.20249061" target="_blank" rel="noopener noreferrer">We demonstrated</a>, in a paper which has not yet been peer reviewed, that the composition of the gut microbiome is the strongest predictor of COVID-19 severity compared to patient's clinical characteristics commonly used to do so. Specifically, we identified that the presence of a bacterium in the stool – called <em>Enterococcus faecalis</em>– was a robust predictor of COVID-19 severity. Not surprisingly, <em>Enterococcus faecalis</em> has been associated with <a href="https://doi.org/10.1053/j.gastro.2011.05.035" target="_blank" rel="noopener noreferrer">chronic</a> <a href="https://doi.org/10.1016/S0002-9440(10)61172-8" target="_blank" rel="noopener noreferrer">inflammation</a>.</p><p><em>Enterococcus faecalis</em> collected from feces can be grown outside of the body in clinical laboratories. Thus, an <em>E. faecalis</em> test might be a cost-effective, rapid and relatively easy way to identify patients who are likely to require more supportive care and therapeutic interventions to improve their chances of survival.</p><p>But it is not yet clear from our research what is the contribution of the altered microbiome in the immune response to SARS-CoV-2 infection. A recent study has shown that <a href="https://doi.org/10.1101/2020.12.11.416180" target="_blank" rel="noopener noreferrer">SARS-CoV-2 infection triggers an imbalance in immune cells</a> called <a href="https://doi.org/10.1111/imr.12170" target="_blank" rel="noopener noreferrer">T regulatory cells that are critical to immune balance</a>.</p><p>Bacteria from the gut microbiome are responsible for the <a href="https://doi.org/10.7554/eLife.30916.001" target="_blank" rel="noopener noreferrer">proper activation</a> <a href="https://doi.org/10.1126/science.1198469" target="_blank" rel="noopener noreferrer">of those T-regulatory</a> <a href="https://doi.org/10.1038/nri.2016.36" target="_blank" rel="noopener noreferrer">cells</a>. Thus, researchers like me need to take repeated patient stool, saliva and blood samples over a longer time frame to learn how the altered microbiome observed in COVID-19 patients can modulate COVID-19 disease severity, perhaps by altering the development of the T-regulatory cells.</p><p>As a Latina scientist investigating interactions between diet, microbiome and immunity, I must stress the importance of better policies to improve access to healthy foods, which lead to a healthier microbiome. It is also important to design culturally sensitive dietary interventions for Black and Latinx communities. While a good-quality diet might not prevent SARS-CoV-2 infection, it can treat the underlying conditions related to its severity.</p><p><em><a href="https://theconversation.com/profiles/ana-maldonado-contreras-1152969" target="_blank">Ana Maldonado-Contreras</a> is an assistant professor of Microbiology and Physiological Systems at the University of Massachusetts Medical School.</em></p><p><em>Disclosure statement: Ana Maldonado-Contreras receives funding from The Helmsley Charitable Trust and her work has been supported by the American Gastroenterological Association. She received The Charles A. King Trust Postdoctoral Research Fellowship. She is also member of the Diversity Committee of the American Gastroenterological Association.</em></p><p><em style="">Reposted with permission from <a href="https://theconversation.com/a-healthy-microbiome-builds-a-strong-immune-system-that-could-help-defeat-covid-19-145668" target="_blank" rel="noopener noreferrer" style="">The Conversation</a>. </em></p>By Jeff Masters, Ph.D.
The New Climate War: the fight to take back our planet is the latest must-read book by leading climate change scientist and communicator Michael Mann of Penn State University.
- 12 New Books Explore Fresh Approaches to Act on Climate Change ... ›
- Dr. Michael Mann on Climate Denial: 'It's Impaired Our Ability to ... ›