Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Cats Wreak Havoc on Native Wildlife, but We’ve Found One Adorable Species Outsmarting Them

Animals
Cats Wreak Havoc on Native Wildlife, but We’ve Found One Adorable Species Outsmarting Them
The long-nosed potoroo may have developed strategies to avoid prowling cats. Dave Catchpole / CC BY 2.0

By Euan Ritchie, Amy Coetsee, Anthony Rendall, Tim Doherty and Vivianna Miritis

Feral and pet cats are responsible for a huge part of Australia's shameful mammal extinction record. Small and medium-sized ground-dwelling mammals are most susceptible.


But we've found one mammal in particular that can outsmart cats and live alongside them: the long-nosed potoroo.

These miniature kangaroo-like marsupials are officially listed as vulnerable. And after the recent devastating fires, extensive swathes of their habitat in southeastern Australia were severely burnt, leaving them more exposed to predators such as foxes and cats. But the true extent of the impact on their numbers remains unclear.

Amid the devastation, our new study is reason to be optimistic.

Using motion-sensing camera traps on the wildlife haven of French Island – which is free of foxes, but not cats – we found potoroos may have developed strategies to avoid prowling cats, such as hiding in dense vegetation.

If these long-nosed potoroos can co-exist with one of the world's most deadly predators, then it's time we rethink our conservation strategies.

Long-nosed potoroos are a bit like mini kangaroos, but spend much of their time digging for fungi. Zoos Victoria

Surviving Cats With a Deadly Game of Hide and Seek

We conservatively estimated that between five and 14 cats lived in our study area (but it takes only one cat to eradicate a population of native animals).

Although cats were common here, we detected them less often in areas of dense vegetation. By contrast, this was where we found potoroos more often.

French Island's thick vegetation provides potoroos with critical refuge to evade feral cats. Vivianna Miritis

Long-nosed potoroos are nocturnal foragers that mainly, but not exclusively, feed in more open habitat before sheltering in dense vegetation during the day. But we found potoroos rarely ventured out of their thick vegetation shelter.

This may be because they're trading off potentially higher quality foraging habitat in more open areas against higher predation risk. In other words, it appears they've effectively learnt to hide from the cats.

Another intriguing result from our study was that although potoroos and feral cats shared more than half of their activity time, the times of peak activity for each species differed.

Cats were active earlier in the night, while potoroo activity peaked three to four hours later. This might be another potoroo strategy to avoid becoming a cat's evening meal.

Temporal activity of cats and long-nosed potoroos for winter and summer, on French Island, Victoria. Their overlap is represented by the area shaded in grey. Modified from Miritis et al. (2020).

Still, completely avoiding cats isn't possible. Our study site was in the national park on French Island, and it's likely cats saturate this remnant patch of long-nosed potoroo habitat.

It's also possible cats may be actively searching for potoroos as prey, and indeed some of our camera images showed cats carrying young long-nosed potoroos in their mouths. These potoroos were more likely killed by these cats, rather than scavenged.

Cats Are Expert Hunters

Cats are exceedingly difficult to manage effectively. They're adaptable, elusive and have a preference for live prey.

The two most common management practices for feral cats are lethal control and exclusion fencing. Lethal control needs to be intensive and conducted over large areas to benefit threatened species.

And outside of predator-free sanctuaries, it must be ongoing. If control stops, cats can reinvade from surrounding areas.

"Safe havens" – created through the use of exclusion fencing or predator-free islands – can overcome some of these challenges. But while exclusion fencing is highly effective, it can create other bad outcomes, including an over-abundance of herbivores, leading to excessive grazing of vegetation.

Camera traps can tell us a lot about how introduced predators and native wildlife interact. Zoos Victoria and Deakin University

Fencing and islands can result in native animals rapidly losing their anti-predator behavior. This can limit the success of reintroducing them to areas outside predator-free havens.

In any case, removing introduced predators might not be really necessary in places native species can co-exist. If long-nosed potoroos have learnt to live with feral cats, we should instead focus on how to maintain their survival strategies.

Why Cat Eradication Isn't Always the Best Option

It's clear cats are here to stay, so we shouldn't simply fall back largely on predator eradication or predator-free havens as the only way to ensure our wildlife have a fighting chance at long-term survival.

Yes, for some species, it's vital to keep feral predators away. But for others like long-nosed potoroos, conserving and creating suitable habitat and different vegetation densities may be the best way to keep them alive.

But perhaps most important is having predator-savvy insurance populations, such as long-nosed potoroos on French Island. This is incredibly valuable for one day moving them to other areas where predators – native or feral – are present, such as nearby Phillip Island.

In the absence of predators, native wildlife can rapidly lose their ability to recognize predator danger. Programs aimed at eradicating introduced predators where they're co-existing with native species need to pay careful attention to this.

Euan Ritchie is an associate professor in wildlife ecology and conservation at the Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University.
Amy Coetsee is a threatened species biologist at the University of Melbourne.
Anthony Rendall is an associate lecturer in conservation biology at Deakin University.
Tim Doherty is an ARC DECRA fellow at the University of Sydney.
Vivianna Miritis is a Ph.D. candidate at the
University of Sydney.

Disclosure statements: Euan Ritchie receives funding from the Australian Research Council, The Australia and Pacific Science Foundation, Australian Geographic, Parks Victoria, Department of Environment, Land, Water and Planning, and the Bushfire and Natural Hazards CRC.
Euan Ritchie is a director (Media Working Group) of the Ecological Society of Australia, and a member of the Australian Mammal Society.
Amy Coetsee is employed by Zoos Victoria, a not-for-profit zoo-based conservation organization and is a member of the Australian Mammal Society.
Anthony Rendall is a member of the Australian Mammal Society.
Tim Doherty receives funding from the Hermon Slade Foundation, NSW Environment Trust, Australian Academy of Science and Australian Research Council. He is a board member for the Society for Conservation Biology Oceania and a member of the Ecological Society of Australia.
Vivianna Miritis is a member of the Ecological Society of Australia, Australian Mammal Society, and Royal Zoological Society of NSW.

Reposted with permission from The Conversation.

A net-casting ogre-faced spider. CBG Photography Group, Centre for Biodiversity Genomics / CC BY-SA 3.0

Just in time for Halloween, scientists at Cornell University have published some frightening research, especially if you're an insect!

The ghoulishly named ogre-faced spider can "hear" with its legs and use that ability to catch insects flying behind it, the study published in Current Biology Thursday concluded.

"Spiders are sensitive to airborne sound," Cornell professor emeritus Dr. Charles Walcott, who was not involved with the study, told the Cornell Chronicle. "That's the big message really."

The net-casting, ogre-faced spider (Deinopis spinosa) has a unique hunting strategy, as study coauthor Cornell University postdoctoral researcher Jay Stafstrom explained in a video.

They hunt only at night using a special kind of web: an A-shaped frame made from non-sticky silk that supports a fuzzy rectangle that they hold with their front forelegs and use to trap prey.

They do this in two ways. In a maneuver called a "forward strike," they pounce down on prey moving beneath them on the ground. This is enabled by their large eyes — the biggest of any spider. These eyes give them 2,000 times the night vision that we have, Science explained.

But the spiders can also perform a move called the "backward strike," Stafstrom explained, in which they reach their legs behind them and catch insects flying through the air.

"So here comes a flying bug and somehow the spider gets information on the sound direction and its distance. The spiders time the 200-millisecond leap if the fly is within its capture zone – much like an over-the-shoulder catch. The spider gets its prey. They're accurate," coauthor Ronald Hoy, the D & D Joslovitz Merksamer Professor in the Department of Neurobiology and Behavior in the College of Arts and Sciences, told the Cornell Chronicle.

What the researchers wanted to understand was how the spiders could tell what was moving behind them when they have no ears.

It isn't a question of peripheral vision. In a 2016 study, the same team blindfolded the spiders and sent them out to hunt, Science explained. This prevented the spiders from making their forward strikes, but they were still able to catch prey using the backwards strike. The researchers thought the spiders were "hearing" their prey with the sensors on the tips of their legs. All spiders have these sensors, but scientists had previously thought they were only able to detect vibrations through surfaces, not sounds in the air.

To test how well the ogre-faced spiders could actually hear, the researchers conducted a two-part experiment.

First, they inserted electrodes into removed spider legs and into the brains of intact spiders. They put the spiders and the legs into a vibration-proof booth and played sounds from two meters (approximately 6.5 feet) away. The spiders and the legs responded to sounds from 100 hertz to 10,000 hertz.

Next, they played the five sounds that had triggered the biggest response to 25 spiders in the wild and 51 spiders in the lab. More than half the spiders did the "backward strike" move when they heard sounds that have a lower frequency similar to insect wing beats. When the higher frequency sounds were played, the spiders did not move. This suggests the higher frequencies may mimic the sounds of predators like birds.

University of Cincinnati spider behavioral ecologist George Uetz told Science that the results were a "surprise" that indicated science has much to learn about spiders as a whole. Because all spiders have these receptors on their legs, it is possible that all spiders can hear. This theory was first put forward by Walcott 60 years ago, but was dismissed at the time, according to the Cornell Chronicle. But studies of other spiders have turned up further evidence since. A 2016 study found that a kind of jumping spider can pick up sonic vibrations in the air.

"We don't know diddly about spiders," Uetz told Science. "They are much more complex than people ever thought they were."

Learning more provides scientists with an opportunity to study their sensory abilities in order to improve technology like bio-sensors, directional microphones and visual processing algorithms, Stafstrom told CNN.

Hoy agreed.

"The point is any understudied, underappreciated group has fascinating lives, even a yucky spider, and we can learn something from it," he told CNN.

EcoWatch Daily Newsletter

Financial institutions in New York state will now have to consider the climate-related risks of their planning strategies. Ramy Majouji / WikiMedia Commons

By Brett Wilkins

Regulators in New York state announced Thursday that banks and other financial services companies are expected to plan and prepare for risks posed by the climate crisis.

Read More Show Less

Trending

There are many different CBD oil brands in today's market. But, figuring out which brand is the best and which brand has the strongest oil might feel challenging and confusing. Our simple guide to the strongest CBD oils will point you in the right direction.

Read More Show Less
The left image shows the OSIRIS-REx collector head hovering over the Sample Return Capsule (SRC) after the Touch-And-Go Sample Acquisition Mechanism arm moved it into the proper position for capture. The right image shows the collector head secured onto the capture ring in the SRC. NASA / Goddard / University of Arizona / Lockheed Martin

A NASA spacecraft has successfully collected a sample from the Bennu asteroid more than 200 million miles away from Earth. The samples were safely stored and will be preserved for scientists to study after the spacecraft drops them over the Utah desert in 2023, according to the Associated Press (AP).

Read More Show Less
Exxon Mobil Refinery is seen from the top of the Louisiana State Capitol in Baton Rouge, Louisiana on March 5, 2017. WClarke / Wikimedia Commons / CC by 4.0

Exxon Mobil will lay off an estimated 14,000 workers, about 15% of its global workforce, including 1,900 workers in the U.S., the company announced Thursday.

Read More Show Less

Support Ecowatch