Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Planting Non-Native Trees Accelerates Carbon Release Back Into the Atmosphere

Science
Planting Non-Native Trees Accelerates Carbon Release Back Into the Atmosphere
A large plantation of young trees is contrast against an older forest in the background. georgeclerk / Getty Images

By Lauren Waller and Warwick Allen

Large-scale reforestation projects such as New Zealand's One Billion Trees program are underway in many countries to help sequester carbon from the atmosphere.

But there is ongoing debate about whether to prioritize native or non-native plants to fight climate change. As our recent research shows, non-native plants often grow faster compared to native plants, but they also decompose faster and this helps to accelerate the release of 150% more carbon dioxide from the soil.


Our results highlight a challenging gap in our understanding of carbon cycling in newly planted or regenerating forests.

It is relatively easy to measure plant biomass (how quickly a plant grows) and to estimate how much carbon dioxide it has removed from the atmosphere. But measuring carbon release is more difficult because it involves complex interactions between the plant, plant-eating insects and soil microorganisms.

This lack of an integrated carbon cycling model that includes species interactions makes predictions for carbon budgeting exceedingly difficult.

How Non-Native Plants Change the Carbon Cycle

There is uncertainty in our climate forecasting because we don't fully understand how the factors that influence carbon cycling - the process in which carbon is both accumulated and lost by plants and soils - differ across ecosystems.

Carbon sequestration projects typically use fast-growing plant species that accumulate carbon in their tissues rapidly. Few projects focus on what goes on in the soil.

Non-native plants often accelerate carbon cycling. They usually have less dense tissues and can grow and incorporate carbon into their tissues faster than native plants. But they also decompose more readily, increasing carbon release back to the atmosphere.

Our research, recently published in the journal Science, shows that when non-native plants arrive in a new place, they establish new interactions with soil organisms. So far, research has mostly focused on how this resetting of interactions with soil microorganisms, herbivorous insects and other organisms helps exotic plants to invade a new place quickly, often overwhelming native species.

Invasive non-native plants have already become a major problem worldwide, and are changing the composition and function of entire ecosystems. But it is less clear how the interactions of invasive non-native plants with other organisms affect carbon cycling.

Planting Non-Native Trees Releases More Carbon

We established 160 experimental plant communities, with different combinations of native and non-native plants. We collected and reared herbivorous insects and created identical mixtures which we added to half of the plots.

We also cultured soil microorganisms to create two different soils that we split across the plant communities. One soil contained microorganisms familiar to the plants and another was unfamiliar.

Herbivorous insects and soil microorganisms feed on live and decaying plant tissue. Their ability to grow depends on the nutritional quality of that food. We found that non-native plants provided a better food source for herbivores compared with native plants – and that resulted in more plant-eating insects in communities dominated by non-native plants.

Similarly, exotic plants also raised the abundance of soil microorganisms involved in the rapid decomposition of plant material. This synergy of multiple organisms and interactions (fast-growing plants with less dense tissues, high herbivore abundance, and increased decomposition by soil microorganisms) means that more of the plant carbon is released back into the atmosphere.

In a practical sense, these soil treatments (soils with microorganisms familiar vs. unfamiliar to the plants) mimic the difference between reforestation (replanting an area) and afforestation (planting trees to create a new forest).

Reforested areas are typically replanted with native species that occurred there before, whereas afforested areas are planted with new species. Our results suggest planting non-native trees into soils with microorganisms they have never encountered (in other words, afforestation with non-native plants) may lead to more rapid release of carbon and undermine the effort to mitigate climate change.

Lauren Waller is a Postdoctoral Fellow, Lincoln University, New Zealand.

Warwick Allen is a Postdoctoral fellow, University of Canterbury.

Disclosure statement: Lauren Waller receives funding from the Tertiary Education Council. Warwick Allen was supported by Centre of Research Excellence funding from the Tertiary Education Commission.

Reposted with permission from The Conversation.

This fall brings three new environmental movies. David Attenborough: A Life On Our Planet | Official Trailer

This week marks the official start of fall, but longer nights and colder days can make it harder to spend time outdoors. Luckily, there are several inspiring environmental films that can be streamed at home.

Read More Show Less

EcoWatch Daily Newsletter

Amazon Employees for Climate Justice walk out and rally at the company's headquarters to demand that leaders take action on climate change in Seattle, Washington on Sept. 20, 2019. JASON REDMOND / AFP via Getty Images

The world's largest online retailer is making it slightly easier for customer to make eco-conscious choices.

Read More Show Less

Trending

Moms Clean Air Force members attend a press conference hosted by Senator Tom Udall (D-N.M.) and Senator Richard Blumenthal (D-Conn.) announcing legislation to ban chlorpyrifos on July 25, 2017. Moms Clean Air Force

The Trump administration's Environmental Protection Agency (EPA) released a risk assessment for toxic pesticide chlorpyrifos Tuesday that downplayed its effects on children's brains and may be the first indication of how the administration's "secret science" policy could impact public health.

Read More Show Less
Evacuees wait to board a bus as they are evacuated by local and state government officials before the arrival of Hurricane Laura on August 26, 2020 in Lake Charles, Louisiana. Joe Raedle / Getty Images

By Maria Trimarchi and Sarah Gleim

If all the glaciers and ice caps on the planet melted, global sea level would rise by about 230 feet. That amount of water would flood nearly every coastal city around the world [source: U.S. Geological Survey]. Rising temperatures, melting arctic ice, drought, desertification and other catastrophic effects of climate change are not examples of future troubles — they are reality today. Climate change isn't just about the environment; its effects touch every part of our lives, from the stability of our governments and economies to our health and where we live.

Read More Show Less
In 'My Octopus Teacher,' Craig Foster becomes fascinated with an octopus and visits her for hundreds of days in a row. Netflix

In his latest documentary, My Octopus Teacher, free diver and filmmaker Craig Foster tells a unique story about his friendship and bond with an octopus in a kelp forest in Cape Town, South Africa. It's been labeled "the love story that we need right now" by The Cut.

Read More Show Less

Support Ecowatch