Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Planting Non-Native Trees Accelerates Carbon Release Back Into the Atmosphere

Science
A large plantation of young trees is contrast against an older forest in the background. georgeclerk / Getty Images

By Lauren Waller and Warwick Allen

Large-scale reforestation projects such as New Zealand's One Billion Trees program are underway in many countries to help sequester carbon from the atmosphere.

But there is ongoing debate about whether to prioritize native or non-native plants to fight climate change. As our recent research shows, non-native plants often grow faster compared to native plants, but they also decompose faster and this helps to accelerate the release of 150% more carbon dioxide from the soil.


Our results highlight a challenging gap in our understanding of carbon cycling in newly planted or regenerating forests.

It is relatively easy to measure plant biomass (how quickly a plant grows) and to estimate how much carbon dioxide it has removed from the atmosphere. But measuring carbon release is more difficult because it involves complex interactions between the plant, plant-eating insects and soil microorganisms.

This lack of an integrated carbon cycling model that includes species interactions makes predictions for carbon budgeting exceedingly difficult.

How Non-Native Plants Change the Carbon Cycle

There is uncertainty in our climate forecasting because we don't fully understand how the factors that influence carbon cycling - the process in which carbon is both accumulated and lost by plants and soils - differ across ecosystems.

Carbon sequestration projects typically use fast-growing plant species that accumulate carbon in their tissues rapidly. Few projects focus on what goes on in the soil.

Non-native plants often accelerate carbon cycling. They usually have less dense tissues and can grow and incorporate carbon into their tissues faster than native plants. But they also decompose more readily, increasing carbon release back to the atmosphere.

Our research, recently published in the journal Science, shows that when non-native plants arrive in a new place, they establish new interactions with soil organisms. So far, research has mostly focused on how this resetting of interactions with soil microorganisms, herbivorous insects and other organisms helps exotic plants to invade a new place quickly, often overwhelming native species.

Invasive non-native plants have already become a major problem worldwide, and are changing the composition and function of entire ecosystems. But it is less clear how the interactions of invasive non-native plants with other organisms affect carbon cycling.

Planting Non-Native Trees Releases More Carbon

We established 160 experimental plant communities, with different combinations of native and non-native plants. We collected and reared herbivorous insects and created identical mixtures which we added to half of the plots.

We also cultured soil microorganisms to create two different soils that we split across the plant communities. One soil contained microorganisms familiar to the plants and another was unfamiliar.

Herbivorous insects and soil microorganisms feed on live and decaying plant tissue. Their ability to grow depends on the nutritional quality of that food. We found that non-native plants provided a better food source for herbivores compared with native plants – and that resulted in more plant-eating insects in communities dominated by non-native plants.

Similarly, exotic plants also raised the abundance of soil microorganisms involved in the rapid decomposition of plant material. This synergy of multiple organisms and interactions (fast-growing plants with less dense tissues, high herbivore abundance, and increased decomposition by soil microorganisms) means that more of the plant carbon is released back into the atmosphere.

In a practical sense, these soil treatments (soils with microorganisms familiar vs. unfamiliar to the plants) mimic the difference between reforestation (replanting an area) and afforestation (planting trees to create a new forest).

Reforested areas are typically replanted with native species that occurred there before, whereas afforested areas are planted with new species. Our results suggest planting non-native trees into soils with microorganisms they have never encountered (in other words, afforestation with non-native plants) may lead to more rapid release of carbon and undermine the effort to mitigate climate change.

Lauren Waller is a Postdoctoral Fellow, Lincoln University, New Zealand.

Warwick Allen is a Postdoctoral fellow, University of Canterbury.

Disclosure statement: Lauren Waller receives funding from the Tertiary Education Council. Warwick Allen was supported by Centre of Research Excellence funding from the Tertiary Education Commission.

Reposted with permission from The Conversation.

EcoWatch Daily Newsletter

People visit Jacksonville Beach on July 4, 2020 in Jacksonville Beach, Florida. Public health experts have attributed Florida's growing coronavirus caseload to people gathering in crowds. Sam Greenwood / Getty Images

Florida broke the national record for the most new coronavirus cases reported in a single day on Sunday, with a total of 15,299.

Read More Show Less
Marco Bottigelli / Moment / Getty Images

By James Shulmeister

Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.

If you have a question you'd like an expert to answer, please send it to climate.change@stuff.co.nz

Read More Show Less
Luxy Images / Getty Images

By Jo Harper

Investment in U.S. offshore wind projects are set to hit $78 billion (€69 billion) this decade, in contrast with an estimated $82 billion for U.S. offshore oil and gasoline projects, Wood Mackenzie data shows. This would be a remarkable feat only four years after the first offshore wind plant — the 30 megawatt (MW) Block Island Wind Farm off the coast of Rhode Island — started operating in U.S. waters.

Read More Show Less
Giacomo Berardi / Unsplash

The COVID-19 pandemic has revealed both the strengths and limitations of globalization. The crisis has made people aware of how industrialized food production can be, and just how far food can travel to get to the local supermarket. There are many benefits to this system, including low prices for consumers and larger, even global, markets for producers. But there are also costs — to the environment, workers, small farmers and to a region or individual nation's food security.

Read More Show Less
Pexels

By Joe Leech

The human body comprises around 60% water.

It's commonly recommended that you drink eight 8-ounce (237-mL) glasses of water per day (the 8×8 rule).

Read More Show Less

By Michael Svoboda

The enduring pandemic will make conventional forms of travel difficult if not impossible this summer. As a result, many will consider virtual alternatives for their vacations, including one of the oldest forms of virtual reality – books.

Read More Show Less

Trending

Public Employees for Environmental Responsibility on Thursday accused NOAA of ignoring its own scientists' findings about the endangerment of the North Atlantic right whale. Lauren Packard / Flickr / CC BY 2.0

By Julia Conley

As the North Atlantic right whale was placed on the International Union for Conservation of Nature's list of critically endangered species Thursday, environmental protection groups accusing the U.S. government of bowing to fishing and fossil fuel industry pressure to downplay the threat and failing to enact common-sense restrictions to protect the animals.

Read More Show Less