Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Carbon Emissions: How Does Your State Score?

Climate

U.S. Energy Information Administration

Yesterday, the U.S. Energy Information Administration (EIA) released the analysis, State-Level Energy-Related Carbon Dioxide Emissions, 2000-2010. Energy-related carbon dioxide (CO2) emissions vary significantly across states (Figure 1), whether considered on an absolute or per capita basis. The overall size of a state, as well as the available fuels, types of businesses, climate and population density play a role in both total and per capita emissions. Additionally, each state’s energy system reflects circumstances specific to that state. For example, some states are located near abundant hydroelectric supplies, while others contain abundant coal resources. This paper presents a basic analysis of the factors that contribute to a state's CO2 profile. This analysis neither attempts to assess the effect of state policies on absolute emissions levels or on changes over time, nor does it intend to imply that certain policies would be appropriate for a particular state.

The term "energy-related carbon dioxide emissions" as used in this paper, includes emissions released at the location where fossil fuels are used. For feedstock application, carbon stored in products such as plastics are not included in reported emissions for the states where they are produced.

It is also important to recognize that the state-level CO2 emissions data presented in this paper count emissions based on the location where the energy is consumed as a fuel. To the extent that fuels are used in one state to generate electricity that is consumed in another state, emissions are attributed to the former rather than the latter. An analysis that attributed "responsibility" for emissions with consumption rather than production of electricity, which is beyond the scope of the present paper, would yield different results.

Between 2000 and 2010, CO2 emissions fell in 32 states and rose in 18 states. However, from 2009 to 2010, only 14 states saw a decrease in emissions, as the U.S. was rebounding from the recession and energy consumption increased in most states, along with emissions.

Over the time period from 2000 to 2010, CO2 emissions fell in 32 states and rose in 18 states, according to Figure 1. The greatest percentage decrease in CO2emissions occurred in Delaware at 27.9 percent, (4.5 million metric tons). The greatest absolute decline was 58.8 million metric tons in Texas (8.3 percent). New York experienced a decline of 38.6 million metric tons (18.3 percent). The greatest percentage increase was in Nebraska at 16.0 percent (6.6 million metric tons), while Colorado experienced the greatest absolute increase (11.8 million metric tons or 13.9 percent).

From 2009 to 2010, only 14 states saw a decrease in emissions. The U.S. was rebounding from the recession and emissions from consumption of energy was up in most states. Because of differences in data aggregations it is difficult to compare the total for all states with the total for the U.S.

Emissions by Fuel

States exhibit very different emissions profiles by fuel type, according to Figure 2. For example, in 2010, coal consumption accounted for 80.8 percent of CO2emissions in West Virginia. In California, 65.2 percent of CO2 emissions came from petroleum, while only 1.4 percent came from coal. Rhode Island had no emissions from coal consumption, but 46.1 percent of its emissions were from natural gas. Vermont's share of CO2 emissions from petroleum was 92.5 percent and Hawaii’s share was 91.4 percent in 2010. No other states exceeded 80 percent in terms of the share of emissions from petroleum; Maine's petroleum share was 75.6 percent.

Emissions by Sector

There can also be significant variations in terms of carbon dioxide emissions by sector—even for states that have similar fuel emissions' profiles. These variations are due to factors such as the use of different fuels for electricity generation, climate and sources of economic outputs (e.g., commercial versus industrial activity). For example, in Vermont the largest share of emissions in 2010 came from the transportation sector (58.7 percent), predominantly from petroleum, but the electric power sector share is small (0.1 percent) because of Vermont's reliance on nuclear power. Vermont's residential sector share was 22.1 percent—indicative of a relatively cold climate where petroleum is the main heating fuel. Hawaii, where a dominant share of emissions is also from petroleum, has a residential share of 0.3 percent—the lowest in the U.S. because of minimal heating and cooling requirements. The largest sector emissions share in Hawaii, like Vermont, was from the transportation sector (49.3 percent). However, unlike Vermont, Hawaii’s electric power sector share nearly as high (40.1 percent). The dominant fossil fuel for the generation of electricity in Hawaii is petroleum.

Another useful way to compare total CO2 emissions across states is to divide them by state population and examine them on a per capita basis. Many factors contribute to the amount of emissions per capita, including: climate, the structure of the state economy, population density, energy sources, building standards and explicit state policies to reduce emissions. The 2010 CO2 emissions in Wyoming were 118.5 metric tons per capita, the highest in the U.S. In 2010, Wyoming was the second largest energy producer in the U.S. Unlike the largest energy producer, Texas, that has a population of 25 million, Wyoming has less than 600 thousand people giving Wyoming the lowest population density in the lower-48 states. Its winters are cold (the average low temperatures in January are in the 5 to 10 degree Fahrenheit range). These factors act to raise Wyoming's per capita emissions compared to other states. The second highest state per capita CO2 emissions level was North Dakota at 80.4 metric tons per capita. Alaska (54.6 metric tons per capita), West Virginia (54.2 metric tons per capita) and Louisiana (49.3 metric tons per capita) round out the top five states in terms of per capita carbon dioxide emissions. All of these are fossil-energy-producing states. The activity of producing energy is itself energy intensive.

The state of New York, with a population of 19.6 million people, had the lowest per capita CO2 emissions—8.8 metric tons per capita. A large portion of the population is located in the New York City metropolitan area where mass transit is readily available and most residences are multi-family units that provide efficiencies of scale in terms of energy for heating and cooling. The New York economy is oriented towards high-value, low-energy-consuming activities such as financial markets. For example, in 2010, New York contained 6.3 percent of the U.S. population, but consumed only 1.1 percent of the country's industrial energy. New York's energy prices are relatively high (the average retail electricity price of 16.41 cents per kWh was third highest in the country in 2010), which in turn encourages energy savings. The second lowest per capita carbon emitting state (9.7 metric tons per capita) was Vermont. As mentioned above, Vermont had almost no emissions from its electric power sector. Other states with relatively low per capita emissions rates include: California (9.9 metric tons per capita), Idaho and Oregon (both 10.4 metric tons per capita).

Carbon Intensity of the Energy Supply

The carbon intensity of energy supply (CO2/Btu) is reflective of the energy fuel mix within a state. As with energy intensity, the states with high carbon intensity of energy supply tend to be the states with high per capita emissions. The top five states in 2010 for the energy carbon intensity as measured in kilograms of CO2 per million Btu (kg CO2/MMBtu)—West Virginia (81.7 kg CO2/MMBtu), Kentucky (77.2 kg CO2/MMBtu), Wyoming (76.8 kg CO2/MMBtu), Indiana (75.1 kg CO2/MMBtu) and North Dakota (73.6 kg CO2/MMBtu)—are all states with coal as the dominant fuel. The national average carbon intensity of the energy supply in 2010 was 57.6 kg CO2/MMBtu. The states with lower carbon intensity tend to be those states with relatively substantial non-carbon electricity generation such as hydropower or nuclear. These states include, for example, Vermont (34.5 kg CO2/MMBtu), Washington (37.4 kg CO2/MMBtu), Oregon (39.1 kg CO2/MMBtu), Idaho (41.2 kg CO2/MMBtu) and New Hampshire (41.5 kg CO2/MMBtu).

Carbon Intensity of the Economy

Another measure, the overall carbon intensity of the economy (CO2/dollar of state Gross Domestic Product, GDP), combines energy intensity with the carbon intensity of that energy supply. As one would expect, the states with the highest carbon intensity of their economies as measured in metric tons of CO2 per million dollars of state GDP (mt CO2/million dollars of GDP) are also the states with the highest values of energy intensity and carbon intensity of that energy supply. In 2010 these states included: Wyoming (1,886 mt CO2/ million dollars of GDP), West Virginia (1,767 mt CO2/ million dollars of GDP) North Dakota (1,681 mt CO2/ million dollars of GDP), Louisiana (1,145 mt CO2/ million dollars of GDP), and Montana (1,098 mt CO2/ million dollars of GDP). The 2010, U.S. average is 430 mt CO2/ million dollars of GDP. The states with the lowest carbon intensity of economic activity are also states that appear on the lower end of both energy intensity and the carbon intensity of that energy supply. These states include: New York (167 mt CO2/ million dollars of GDP), Connecticut (175 mt CO2/ million dollars of GDP), Delaware (209 mt CO2/ million dollars of GDP), Massachusetts (213 mt CO2/ million dollars of GDP), and California (214 mt CO2/ million dollars of GDP).

Electricity Trade

Because this analysis does not account for electricity trade, it is important to understand how much this can influence a state's CO2 emissions profile. The Net Electricity Trade Index indicates whether a state is self sufficient in the generation of electricity in a given year (a value of 1.0), is a net importer of electricity in a given year (a value of less than 1.0), or is a net exporter of electricity in a given year (a value greater than 1.0). Over half of the 10 states with the highest per capita emissions the states are net exporters of electricity in at least some years. In particular, Wyoming, North Dakota, West Virginia and Montana are large electricity exporters of power produced predominantly with coal. New Mexico is also a net exporter of electricity. Oklahoma is a net exporter, but its dominant fuel is natural gas. Indiana is a small exporter in some years, but was export-neutral in 2009 and 2010. Kentucky, like Indiana is a coal-fueled generation state, but has been export-neutral in recent years. Louisiana, the only state of high per capita emitters that is consistently a net importer of electricity, and Alaska a state that is an importer in some years, but export-neutral in most, are both fossil-fuel producing states with a large energy-intensive component of their economies.

Four of the 10 states with the lowest per capita CO2 emissions are consistent importers of electricity: Idaho, California, Massachusetts and Florida. Rhode Island was an electricity exporter in 2001 and was self sufficient in 2000, 2008, 2009 and 2010. In the other years Rhode Island was an importer of electricity (about 40 percent in 2004). Idaho generates its electricity principally with hydroelectric power and has historically imported 50 percent or more of its electricity from other states. California consistently imports about 30 percent of its electricity and natural gas is the dominant fuel for the electricity that it generates internally. Both Massachusetts and Florida also use natural gas as the dominant fuel for electricity generation.

New York, which is self sufficient many years and a slight importer in other years, generates a dominant share of its electricity with nuclear power. Vermont, which is a consistent exporter of electricity, is also a state dominated by nuclear power generation. Connecticut, also a nuclear power producer, is a slight exporter in some years, an importer in others and self sufficient in yet others. Both Oregon and Washington are usually either self sufficient or net exporters. However, in 2001, which was a particularly bad year for hydroelectric generation in the Pacific Northwest, both states were net importers of electricity.

If the emissions associated with the generation of electricity were allocated to the states where that electricity is consumed, in many cases, the emissions profiles of both the producing and consuming states would change.

The EIA also publishes monthly estimates of nationwide CO2 emissions from the consumption of energy as well as other short-term projection reports. There are also projection reports available of energy-related carbon dioxide emissions through 2040 on the EIA website.

Visit EcoWatch’s CLIMATE CHANGE page for more related news on this topic.

——–

Click here to tell Congress to Expedite Renewable Energy.

 

EcoWatch Daily Newsletter

Supporters cheer before Trump arrives for a rally at the BOK Center on June 20, 2020 in Tulsa, OK. Jabin Botsford / The Washington Post via Getty Images

On Monday and Tuesday of the week that President Donald Trump held his first rally since March in Tulsa, Oklahoma, the county reported 76 and 96 new coronavirus cases respectively, according to POLITICO. This week, the county broke its new case record Monday with 261 cases and reported a further 206 cases on Tuesday. Now, Tulsa's top public health official thinks the rally and counterprotest "likely contributed" to the surge.

Read More Show Less
In the tropics, farmers often slash and burn forests to clear fertile land for crops, but a new method avoids that technique. Inga Foundation video

Rainforests are an important defense against climate change because they absorb carbon. But many are being destroyed on a massive scale.

Read More Show Less
A truck spreads lime on a meadow to increase the soil's fertility in Yorkshire Dales, UK. Farm Images / Universal Images Group via Getty Images

As we look for advanced technology to replace our dependence on fossil fuels and to rid the oceans of plastic, one solution to the climate crisis might simply be found in rocks. New research found that dispersing rock dust over farmland could suck billions of tons of carbon dioxide from the air every year, according to the first detailed large scale analysis of the technique, as The Guardian reported.

Read More Show Less
Global heating imposes a harsh cost at the most critical time of all: the moment of spawning. Pxfuel

By Tim Radford

German scientists now know why so many fish are so vulnerable to ever-warming oceans. Global heating imposes a harsh cost at the most critical time of all: the moment of spawning.

Read More Show Less
Guillain-Barre syndrome occurs when the body's own immune system attacks and injures the nerves outside of the spinal cord or brain – the peripheral nervous system. Niq Steele / Getty Images

By Sherry H-Y. Chou, Aarti Sarwal and Neha S. Dangayach

The patient in the case report (let's call him Tom) was 54 and in good health. For two days in May, he felt unwell and was too weak to get out of bed. When his family finally brought him to the hospital, doctors found that he had a fever and signs of a severe infection, or sepsis. He tested positive for SARS-CoV-2, the virus that causes COVID-19 infection. In addition to symptoms of COVID-19, he was also too weak to move his legs.

When a neurologist examined him, Tom was diagnosed with Guillain-Barre Syndrome, an autoimmune disease that causes abnormal sensation and weakness due to delays in sending signals through the nerves. Usually reversible, in severe cases it can cause prolonged paralysis involving breathing muscles, require ventilator support and sometimes leave permanent neurological deficits. Early recognition by expert neurologists is key to proper treatment.

We are neurologists specializing in intensive care and leading studies related to neurological complications from COVID-19. Given the occurrence of Guillain-Barre Syndrome in prior pandemics with other corona viruses like SARS and MERS, we are investigating a possible link between Guillain-Barre Syndrome and COVID-19 and tracking published reports to see if there is any link between Guillain-Barre Syndrome and COVID-19.

Some patients may not seek timely medical care for neurological symptoms like prolonged headache, vision loss and new muscle weakness due to fear of getting exposed to virus in the emergency setting. People need to know that medical facilities have taken full precautions to protect patients. Seeking timely medical evaluation for neurological symptoms can help treat many of these diseases.

What Is Guillain-Barre Syndrome?

Guillain-Barre syndrome occurs when the body's own immune system attacks and injures the nerves outside of the spinal cord or brain – the peripheral nervous system. Most commonly, the injury involves the protective sheath, or myelin, that wraps nerves and is essential to nerve function.

Without the myelin sheath, signals that go through a nerve are slowed or lost, which causes the nerve to malfunction.

To diagnose Guillain-Barre Syndrome, neurologists perform a detailed neurological exam. Due to the nerve injury, patients often may have loss of reflexes on examination. Doctors often need to perform a lumbar puncture, otherwise known as spinal tap, to sample spinal fluid and look for signs of inflammation and abnormal antibodies.

Studies have shown that giving patients an infusion of antibodies derived from donated blood or plasma exchange – a process that cleans patients' blood of harmful antibodies - can speed up recovery. A very small subset of patients may need these therapies long-term.

The majority of Guillain-Barre Syndrome patients improve within a few weeks and eventually can make a full recovery. However, some patients with Guillain-Barre Syndrome have lingering symptoms including weakness and abnormal sensations in arms and/or legs; rarely patients may be bedridden or disabled long-term.

Guillain-Barre Syndrome and Pandemics

As the COVID-19 pandemic sweeps across the globe, many neurologic specialists have been on the lookout for potentially serious nervous system complications such as Guillain-Barre Syndrome.

Though Guillain-Barre Syndrome is rare, it is well known to emerge following bacterial infections, such as Campylobacter jejuni, a common cause of food poisoning, and a multitude of viral infections including the flu virus, Zika virus and other coronaviruses.

Studies showed an increase in Guillain-Barre Syndrome cases following the 2009 H1N1 flu pandemic, suggesting a possible connection. The presumed cause for this link is that the body's own immune response to fight the infection turns on itself and attacks the peripheral nerves. This is called an "autoimmune" condition. When a pandemic affects as many people as our current COVID-19 crisis, even a rare complication can become a significant public health problem. That is especially true for one that causes neurological dysfunction where the recovery takes a long time and may be incomplete.

The first reports of Guillain-Barre Syndrome in COVID-19 pandemic originated from Italy, Spain and China, where the pandemic surged before the U.S. crisis.

Though there is clear clinical suspicion that COVID-19 can lead to Guillain-Barre Syndrome, many important questions remain. What are the chances that someone gets Guillain-Barre Syndrome during or following a COVID-19 infection? Does Guillain-Barre Syndrome happen more often in those who have been infected with COVID-19 compared to other types of infections, such as the flu?

The only way to get answers is through a prospective study where doctors perform systematic surveillance and collect data on a large group of patients. There are ongoing large research consortia hard at work to figure out answers to these questions.

Understanding the Association Between COVID-19 and Guillain-Barre Syndrome

While large research studies are underway, overall it appears that Guillain-Barre Syndrome is a rare but serious phenomenon possibly linked to COVID-19. Given that more than 10.7 million cases have been reported for COVID-19, there have been 10 reported cases of COVID-19 patients with Guillain-Barre Syndrome so far – only two reported cases in the U.S., five in Italy, two cases in Iran and one from Wuhan, China.

It is certainly possible that there are other cases that have not been reported. The Global Consortium Study of Neurological Dysfunctions in COVID-19 is actively underway to find out how often neurological problems like Guillain-Barre Syndrome is seen in hospitalized COVID-19 patients. Also, just because Guillain-Barre Syndrome occurs in a patient diagnosed with COVID-19, that does not imply that it was caused by the virus; this still may be a coincident occurrence. More research is needed to understand how the two events are related.

Due to the pandemic and infection-containment considerations, diagnostic tests, such as a nerve conduction study that used to be routine for patients with suspected Guillain-Barre Syndrome, are more difficult to do. In both U.S. cases, the initial diagnosis and treatment were all based on clinical examination by a neurological experts rather than any tests. Both patients survived but with significant residual weakness at the time these case reports came out, but that is not uncommon for Guillain-Barre Syndrome patients. The road to recovery may sometimes be long, but many patients can make a full recovery with time.

Though the reported cases of Guillain-Barre Syndrome so far all have severe symptoms, this is not uncommon in a pandemic situation where the less sick patients may stay home and not present for medical care for fear of being exposed to the virus. This, plus the limited COVID-19 testing capability across the U.S., may skew our current detection of Guillain-Barre Syndrome cases toward the sicker patients who have to go to a hospital. In general, the majority of Guillain-Barre Syndrome patients do recover, given enough time. We do not yet know whether this is true for COVID-19-related cases at this stage of the pandemic. We and colleagues around the world are working around the clock to find answers to these critical questions.

Sherry H-Y. Chou is an Associate Professor of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh.

Aarti Sarwal is an Associate Professor, Neurology, Wake Forest University.

Neha S. Dangayach is an Assistant Professor of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai.

Disclosure statement: Sherry H-Y. Chou receives funding from The University of Pittsburgh Clinical Translational Science Institute (CTSI), the National Institute of Health, and the University of Pittsburgh School of Medicine Dean's Faculty Advancement Award. Sherry H-Y. Chou is a member of Board of Directors for the Neurocritical Care Society. Neha S. Dangayach receives funding from the Bee Foundation, the Friedman Brain Institute, the Neurocritical Care Society, InCHIP-UConn Center for mHealth and Social Media Seed Grant. She is faculty for emcrit.org and for AiSinai. Aarti Sarwal does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Reposted with permission from The Conversation.


Nurses wear PPE prior to caring for a COVID-19 patient in the ICU at Sharp Grossmont Hospital on May 5, 2020 in La Mesa, California. Mario Tama / Getty Images

One of the initial reasons social distancing guidelines were put in place was to allow the healthcare system to adapt to a surge in patients since there was a critical shortage of beds, ventilators and personal protective equipment. In fact, masks that were designed for single-use were reused for an entire week in some hospitals.

Read More Show Less

Trending

Democratic presidential hopefuls Joe Biden and Senator Bernie Sanders greet each other with a safe elbow bump before the start of the Democratic Party 2020 presidential debate in a CNN Washington Bureau studio in Washington, DC on March 15, 2020. Mandel Ngan / AFP / Getty Images

By Jake Johnson

Unity Task Forces formed by presumptive Democratic presidential nominee Joe Biden and Sen. Bernie Sanders unveiled sweeping party platform recommendations Wednesday that—while falling short of progressive ambitions in a number of areas, from climate to healthcare—were applauded as important steps toward a bold and just policy agenda that matches the severity of the moment.

"We've moved the needle a lot, especially on environmental justice and upping Biden's ambition," said Sunrise Movement co-founder and executive director Varshini Prakash, a member of the Biden-Sanders Climate Task Force. "But there's still more work to do to push Democrats to act at the scale of the climate crisis."

The climate panel—co-chaired by Rep. Alexandria Ocasio-Cortez (D-N.Y.) and former Secretary of State John Kerry—recommended that the Democratic Party commit to "eliminating carbon pollution from power plants by 2035," massively expanding investments in clean energy sources, and "achieving net-zero greenhouse gas emissions for all new buildings by 2030."

In a series of tweets Wednesday night, Ocasio-Cortez—the lead sponsor of the House Green New Deal resolution—noted that the Climate Task Force "shaved 15 years off Biden's previous target for 100% clean energy."

"Of course, like in any collaborative effort, there are areas of negotiation and compromise," said the New York Democrat. "But I do believe that the Climate Task Force effort meaningfully and substantively improved Biden's positions."

 

The 110 pages of policy recommendations from the six eight-person Unity Task Forces on education, the economy, criminal justice, immigration, climate change, and healthcare are aimed at shaping negotiations over the 2020 Democratic platform at the party's convention next month.

Sanders said that while the "end result isn't what I or my supporters would've written alone, the task forces have created a good policy blueprint that will move this country in a much-needed progressive direction and substantially improve the lives of working families throughout our country."

"I look forward to working with Vice President Biden to help him win this campaign," the Vermont senator added, "and to move this country forward toward economic, racial, social, and environmental justice."

Biden, for his part, applauded the task forces "for helping build a bold, transformative platform for our party and for our country."

"I am deeply grateful to Bernie Sanders for working with us to unite our party and deliver real, lasting change for generations to come," said the former vice president.

On the life-or-death matter of reforming America's dysfunctional private health insurance system—a subject on which Sanders and Biden clashed repeatedly throughout the Democratic primary process—the Unity Task Force affirmed healthcare as "a right" but did not embrace Medicare for All, the signature policy plank of the Vermont senator's presidential bid.

Instead, the panel recommended building on the Affordable Care Act by establishing a public option, investing in community health centers, and lowering prescription drug costs by allowing the federal government to negotiate prices. The task force also endorsed making all Covid-19 testing, treatments, and potential vaccines free and expanding Medicaid for the duration of the pandemic.

"It has always been a crisis that tens of millions of Americans have no or inadequate health insurance—but in a pandemic, it's potentially catastrophic for public health," the task force wrote.

Dr. Abdul El-Sayed, a former Michigan gubernatorial candidate and Sanders-appointed member of the Healthcare Task Force, said that despite major disagreements, the panel "came to recommendations that will yield one of the most progressive Democratic campaign platforms in history—though we have further yet to go."

 

Observers and advocacy groups also applauded the Unity Task Forces for recommending the creation of a postal banking system, endorsing a ban on for-profit charter schools, ending the use of private prisons, and imposing a 100-day moratorium on deportations "while conducting a full-scale study on current practices to develop recommendations for transforming enforcement policies and practices at ICE and CBP."

Marisa Franco, director of immigrant rights group Mijente, said in a statement that "going into these task force negotiations, we knew we were going to have to push Biden past his comfort zone, both to reconcile with past offenses and to carve a new path forward."

"That is exactly what we did, unapologetically," said Franco, a member of the Immigration Task Force. "For years, Mijente, along with the broader immigrant rights movement, has fought to reshape the narrative around immigration towards racial justice and to focus these very demands. We expect Biden and the Democratic Party to implement them in their entirety."

"There is no going back," Franco added. "Not an inch, not a step. We must only move forward from here."

Reposted with permission from Common Dreams.