Quantcast
Climate
Pexels

Carbon Capture: What We Don’t Talk About When We Talk About Climate Change

By Daniel Ross

The latest Intergovernmental Panel on Climate Change (IPCC) report lays out a rather grim set of observations, predictions and warnings. Perhaps the biggest takeaway? That the world cannot warm more than 1.5 degrees Celsius (1.5°C) over pre-industrial levels without significant impacts.


If the world warms a mere half a degree more than that, hundreds of millions of people could face dire consequences—namely famine, disease and displacement—from things like rising sea levels and increased drought and flooding.

Time for action to stem the worst effects of climate change is quickly running out, however. If we're to stay below or within range of that 1.5°C threshold, global carbon emissions must decrease by about 45 percent from 2010 levels by 2030, and we must reach zero carbon output around 2050. Energy sector carbon emissions, however, are still growing, not shrinking.

What's more, it won't be enough to simply slash carbon emissions to zero. As the latest IPCC report points out, we'll also need to suck up to 1 trillion metric tons of carbon from the biosphere over the 21st century.

If large-scale CO2 extraction is to be effective, many experts warn that such efforts will need to begin in earnest within the next few years. But carbon extraction is far from a primary feature of climate discussions among policy makers. Glen Peters is a climate researcher at the CICERO Center for International Climate Research in Oslo. He told Norway's VG News:

There are media reports of images showing wind turbines and solar panels. It is well and good, but meeting the goals in the Paris agreement requires so-called negative emissions—removing much of the CO₂ that has already been released. The subject is little talked about, but politicians will eventually come to understand what a huge task it is.

The other problem is that the technologies currently capable of sucking CO2 from the air are still being developed and are too expensive to be commercially viable, which leaves experts hamstrung as to whether this is the right approach to stall global warming. In a 2016 paper published in Science, Peters and Kevin Anderson, the deputy director of the Tyndall Centre for Climate Change Research at the University of Manchester, called the assumption that these technologies and concepts will work to scale in time a "moral hazard."

However, Roger Aines, chief scientist of the energy program at Lawrence Livermore National Laboratory, disagrees. The "magnitude of the problem" is such, he told Truthout, that "we have to get started" with widely employing technologies capable of removing CO2 from the air. "It's the question of how to get started," he said, "that occupies a lot of my time."

How to Achieve Negative Emissions

For the past few decades, talk of CO2 filtration has largely surrounded carbon capture and storage (CCS). In essence, CCS is when CO2 is removed at the source of the emission, like a power plant smokestack, before being repurposed. In most cases, the captured CO2 is piped back underground to boost oil production in wells that are drying up.

There's a reason CCS is crucial when it comes to carbon extraction: It's far easier to filter out CO2 at the source than it is directly from the air. That's because the ratio of CO2 in, say, a coal power-plant exhaust flue (about 10 percent CO2) is that much higher than the ambient air (where CO2 is about 0.04 percent). The problem is that most CCS technologies are, at the very best, carbon neutral, meaning they squirrel away as much CO2 as they emit in the first place. However, if we're to remain under that 1.5°C threshold, we'll need to employ large-scale use of negative emission technologies—in other words, technologies that extract more CO2 from the atmosphere than they release.

The carbon capture and storage process prevents the release of carbon dioxide into the atmosphere by separating and capturing it from the emissions of industrial processes and storing it in deep underground geologic formations.U.S. Environmental Protection Agency

Bioenergy with carbon capture and storage (BECCS) receives broad support in the negative emissions arena. The overall premise behind BECCS is fairly simple: Growing trees and tall grasses for use as an energy source. As they're growing, these plants will absorb CO2 from the air, and then, when burned for energy, the CO2 emitted will be captured and piped back underground. Therefore, the whole process would absorb and store away more CO2 than it would emit. Voila! Negative emissions.

There are, however, any number of major obstacles standing in the way of BECCS being employed on a scale large enough for it to make a significant impact. For one, the amount of land required to make BECCS feasible under the Paris agreement is staggering—as much as three times the area of India. Furthermore, as Harvard Professor David Keith warned in Carbon Brief, "[W]e must be cautious of technologies that aim to remediate the carbon problem while greatly expanding our impact on the land."

Then there's the potentially complicated international logistics of growing the crops in one country, shipping them to another for combustion, and then to another for permanent storage—each layer possibly adding a separate carbon footprint, while making the measuring, reporting and verification of the system a nightmare of bureaucratic red tape.

All of which explains why there is currently no commercially operable BECCS facility, explained Corinne Le Quéré, professor of climate change science and policy at the University of East Anglia. Nevertheless, it's an exciting technology in regard to its electricity-producing potential, and is being seriously explored by the chemical industry as a power source, she added. "The fact that BECCS produces energy and an income from the process itself is a very big incentive."

Low-Carbon Biofuels

The cost of negative emissions has always been prohibitive. An American Physical Society report from 2011 put the price of capturing CO2 directly from the air between $600 and $1,000 per metric ton. In contrast, the cost of capturing CO2 at the source can be roughly 10 times less. Nevertheless, a Canadian company called Carbon Engineering claims that its pilot plant in Calgary can extract CO2 from the air for between $94 to $232 per metric ton. To put that into perspective, carbon is currently priced in Europe at $20.03 a metric ton, and if the Paris Climate Agreement's emissions targets are to be met, Carbon Tracker warned, the price of traded carbon allowances must rise to levels that make even efficiently run coal power plants unprofitable.

In short, Carbon Engineering's technology works like this: When air is blown through towers containing a potassium hydroxide solution, the CO2 molecules react with the chemical mixture to make potassium carbonate, which is then processed into calcium carbonate pellets. When heated, the pellets release CO2 for capture. What then? Carbon Engineering plans to use the CO2 to make low-carbon biofuels.

Carbon Engineering is one of only a few companies seriously developing direct air capture technologies at reasonable costs. At its Iceland power plant, Climeworks built a unit that extracts CO2 directly from the ambient air and pipes it underground, where it combines with the country's basaltic rock to create fast-forming minerals, according to a report in Quartz—part of its fantastic recent series on climate change. Earlier this year in Zurich, Climeworks launched the world's first commercial direct air capture plant, where the filtered CO2 is supplied to a nearby greenhouse to grow vegetables.

According to Graciela Chichilnisky, CEO and co-founder of carbon-capture company Global Thermostat, the company's technology—which is powered by low-cost leftover heat—will be able to remove CO2 for between $25 and $80 per metric ton when it's scaled up (and depending on capacity).

There are other more speculative projects in the pipeline. Back in 2007, the British billionaire entrepreneur Richard Branson offered $25 million to anyone who develops a commercially viable technology capable of removing at least 1 billion tons of CO2 annually from the air for 10 years. The prize remains unclaimed, but is still up for grabs.

Klaus Lackner, director of the Center for Negative Carbon Emissions at Arizona State University, is currently working on a pilot direct air capture technology that he hopes will be, within a couple of years, capable of removing from the air about a ton of CO2 a day. Commercially speaking, these technologies as a whole are "truly interesting when below $100 a [metric] ton," he said, "but you could imagine that, if things are really hurting, people are going to do it anyway, even if it is more expensive."

Action Must Be Quick

Besides BECCS and direct air capture technologies, there are other proposed ways to suck CO2 from the biosphere, most of which are laid out in a recent European Union report. Afforestation—the planting of forests in treeless areas—is one method bandied around by experts. Lawrence Livermore National Laboratory's Roger Aines has other ideas.

"The last 200 years or so, we have lost the equivalent of 500 gigatonnes of carbon dioxide from the carbon content of our agricultural soil. So, it's reasonable to say, if we use good agricultural practices, that we can return that carbon from the air to the soil," he said. While a variety of negative emissions technologies must be employed together to tackle climate change, better land use practices are the ones most likely to have the "biggest impact," he added.

Nevertheless, "the reality of this is that it's like a major war. The next 20 years are going to be pretty bad, from a climate perspective," Aines said, mirroring the findings of the latest IPCC report: that any increase in global temperatures will only worsen the impacts from extreme weather patterns already being felt. And while Aines still believes that "we're going to figure things out," what's now clear is that we only have a dozen or so years to actually do so.

Daniel Ross is a journalist whose work has appeared in Truthout, the Guardian, FairWarning, Newsweek, YES! Magazine, Salon, AlterNet, Vice and a number of other publications. He is based in Los Angeles. Follow him on Twitter @1danross.

This article was produced by Earth | Food | Life, a project of the Independent Media Institute, and originally published by Truthout.

Show Comments ()

EcoWatch Daily Newsletter

Sponsored
Popular
The battlefield of Verdun is part of France's Zone Rouge, cordoned off since the end of WWI. Oeuvre personnelle / Wikimedia Commons

This World War I Battlefield Is a Haunting Reminder of the Environmental Costs of War

World War I ended 100 years ago on Sunday, but 42,000 acres in northeast France serve as a living memorial to the human and environmental costs of war.

The battle of Verdun was the longest continuous conflict in the Great War, and it so devastated the land it took place on that, after the war, the government cordoned it off-limits to human habitation. What was once farmland became the Zone Rouge, or Red Zone, as National Geographic reported.

Keep reading... Show less
Popular
Westend61 / Getty Images

EcoWatch Gratitude Photo Contest: Submit Now!

EcoWatch is pleased to announce its first photo contest! Show us what in nature you are most thankful for this Thanksgiving. Whether you have a love for oceans, animals, or parks, we want to see your best photos that capture what you love about this planet.

Keep reading... Show less
Animals
Waves from the Atlantic Ocean crash against a scenic beach on Cape Cod, Massachusetts. This sandy peninsula is a popular summer vacation destination and is also known for its many Great White sharks. Velvetfish / iStock / Getty Images

Cape Cod’s Gray Seal and White Shark Problem Is Anything but Black-and-White

By Jason Bittel

On a sunny Saturday in mid-September, 26-year-old Arthur Medici was boogie-boarding in the waves off Wellfleet, Massachusetts, when a great white shark bit his leg. Despite the efforts of a friend who pulled him ashore and the paramedics who rushed him to the hospital, Medici died from his injuries. It's about as tragic a story as you can imagine: a young life cut short due to a freak run-in with a wild animal.

Keep reading... Show less
Renewable Energy
Max Pixel

Koch Industries Lobbies Against Electric Vehicle Tax Credit

By Dana Drugmand

Koch Industries is calling for the elimination of tax credits for electric vehicles (EVs), all while claiming that it does not oppose plug-in cars and inviting the elimination of oil and gas subsidies that the petroleum conglomerate and its industry peers receive.

Outgoing Nevada Republican Senator Dean Heller introduced a bill in September that would lift the sales cap on electric vehicles eligible for a federal tax credit, and replace the cap with a deadline that would dictate when the credit would start being phased out.

Keep reading... Show less
Sponsored
Pexels

10 Things You Always Wanted to Know About Neonics

By Daniel Raichel

As massive numbers of bees and other pollinators keep dying across the globe, study after study continues to connect these deaths to neonicotinoid pesticides (A.K.A. "neonics"). With the science piling up, and other countries starting to take critical pollinator-saving action, here's a quick primer on all things neonics:

Keep reading... Show less
Health
Judita Juknele / EyeEm / Getty Images

Lyme Disease Expected to Surge

By Marlene Cimons

German physician Alfred Buchwald had no clue that the chronic skin inflammation he described in 1883 was the first recorded case of a serious tick-carrying disease, one that would take hold in a small Connecticut town almost a century later and go on to afflict people across the U.S.

Keep reading... Show less
Sponsored
Animals
Black rhino. Gerry Zambonini / Flickr / CC BY-SA 2.0

China Restores Rhino and Tiger Parts Ban After International Fury

Great news from China! Following intense international backlash, the Chinese government said Monday that it has postponed a regulation that would have allowed the use of tiger bone and rhino horn for medicine, research and other purposes.

In October, China alarmed animal rights activists around the world when it weakened a 25-year-old ban on the trading of the animal parts. Conservationists said it would be akin to signing a "death warrant" for endangered tiger and rhino populations.

Keep reading... Show less
Oceans
The federal government must consider endangered species like sea otters before issue fracking permits off California's southern coast. Danita Delimon / Gallo Images / Getty Images

Judge: Wildlife Must Be Considered Before Permitting Fracking Off SoCal Coast

In what environmentalists are calling a major victory, a California judge ruled Friday that the Trump administration cannot approve any new fracking off the state's southern coast until a full review is done assessing the controversial technique's impact on endangered species and coastal resources, The San Francisco Chronicle reported.

Keep reading... Show less
Sponsored

mail-copy

The best of EcoWatch, right in your inbox. Sign up for our email newsletter!