Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

Big Pharma Emits More Greenhouse Gases Than the Automotive Industry

Insights + Opinion
Big Pharma Emits More Greenhouse Gases Than the Automotive Industry

By Lotfi Belkhir

Rarely does mention of the pharmaceutical industry conjure up images of smoke stacks, pollution and environmental damage.

Yet our recent study found the global pharmaceutical industry is not only a significant contributor to global warming, but it is also dirtier than the global automotive production sector.


It was a surprise to find how little attention researchers have paid to the industry's greenhouse gas emissions. Only two other studies had some relevance: one looked at the environmental impact of the U.S. healthcare system and the other at the pollution (mostly water) discharged by drug manufacturers.

Our study was the first to assess the carbon footprint of the pharma sector.

More Polluting

More than 200 companies represent the global pharmaceutical market, yet only 25 consistently reported their direct and indirect greenhouse gas emissions in the past five years. Of those, only 15 reported their emissions since 2012.

One immediate and striking result is that the pharmaceutical sector is far from green. We assessed the sector's emissions for each one million dollars of revenue in 2015. Larger businesses will always generate more emissions than smaller ones; in order to do a fair comparison, we evaluated emissions intensity.

We found it was 48.55 tonnes of CO2e (carbon dioxide equivalent) per million dollars. That's about 55 percent greater than the automotive sector at 31.4 tonnes of CO2e/$M for that same year. We restricted our analysis to the direct emissions generated by the companies' operations and to the indirect emissions generated by the electricity purchased by these companies from their respective utilities companies.

The total global emissions of the pharma sector amounts to about 52 megatonnes of CO2e in 2015, more than the 46.4 megatonnes of CO2e generated by the automotive sector in the same year. The value of the pharma market, however, is smaller than the automotive market. By our calculations, the pharma market is 28 percent smaller yet 13 percent more polluting than the automotive sector.

Extreme Variability

We also found emissions intensity varied greatly within the pharmaceutical sector. For example, the emissions intensity of Eli Lilly (77.3 tonnes of CO2e/$M) was 5.5 times greater than Roche (14 tonnes CO2e/$M) in 2015, and Procter & Gamble's CO2 emissions were five times greater than Johnson & Johnson even though the two companies generated the same level of revenues and sell similar lines of products.

We found outliers too. The German company Bayer AG reported emissions of 9.7 megatonnes of CO2e and revenues of US$51.4 billion, yielding an emission intensity of 189 tonnes CO2e/$M. This intensity level is more than four times greater than the overall pharmaceutical sector.

In trying to explain this incredibly large deviation, we found that Bayer's revenues derive from pharmaceutical products, medical equipment and agricultural commodities. While Bayer reports its financial revenues separately for each division, it lumps together the emissions from all the divisions. The company also reports and tracks its emission intensity in terms of tonnes of CO2e produced for each tonne of manufactured goods, whether fertilizer or Aspirin, for example.

This level of opacity makes it not only impossible to assess the true environmental performance of these kind of companies. It also raises questions about the sincerity of these companies' strategies and actions in reducing their contribution to climate change.

Climate Compliance

We also estimated how much the pharmaceutical sector would have to reduce its emissions to comply with the reduction targets in the Paris agreement.

We found that by 2025, the overall pharma sector would need to reduce its emissions intensity by about 59 percent from 2015 levels. While this is clearly a far cry from their current levels, it is interesting to note that some of the 15 largest companies are already operating at that level, namely Amgen Inc., Johnson & Johnson and Roche Holding AG.

If those performance levels are achievable by some, why can't they be achieved by all?

These three leading companies are also the ones with the highest level of profitability and revenue growth in the whole sector. Indeed Roche, Johnson & Johnson and Amgen showed revenue increases of 27.2 percent, 25.7 percent and 7.8 percent respectively between 2012 and 2015, while managing to reduce their emissions by 18.7 percent, 8.3 percent and eight percent respectively. This supports the premise that environmental and financial performance aren't mutually exclusive.

The pharmaceutical industry is responsible for some serious environmental impacts beyond greenhouse gas emissions. For example, the wastewater from drug manufacturers in Patancheru, India has left river sediment, ground water and drinking water polluted. Researchers estimated that in a single day, 44 kilograms of ciprofloxacin, a broad-spectrum antibiotic, was released — enough to treat everyone in a city of 44,000 inhabitants.

Clearly, there is a dire need for more extensive and sustained research as well as more scrutiny of the pharmaceutical industry's environmental practices and performance. Healing people is no justification for killing the planet.

Lotfi Belkhir is an associate professor & chair of eco-entrepreneurship at McMaster University.
Disclosure statement: Lotfi Belkhir does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond his academic appointment.

Reposted with permission from our media associate The Conversation.

A net-casting ogre-faced spider. CBG Photography Group, Centre for Biodiversity Genomics / CC BY-SA 3.0

Just in time for Halloween, scientists at Cornell University have published some frightening research, especially if you're an insect!

The ghoulishly named ogre-faced spider can "hear" with its legs and use that ability to catch insects flying behind it, the study published in Current Biology Thursday concluded.

"Spiders are sensitive to airborne sound," Cornell professor emeritus Dr. Charles Walcott, who was not involved with the study, told the Cornell Chronicle. "That's the big message really."

The net-casting, ogre-faced spider (Deinopis spinosa) has a unique hunting strategy, as study coauthor Cornell University postdoctoral researcher Jay Stafstrom explained in a video.

They hunt only at night using a special kind of web: an A-shaped frame made from non-sticky silk that supports a fuzzy rectangle that they hold with their front forelegs and use to trap prey.

They do this in two ways. In a maneuver called a "forward strike," they pounce down on prey moving beneath them on the ground. This is enabled by their large eyes — the biggest of any spider. These eyes give them 2,000 times the night vision that we have, Science explained.

But the spiders can also perform a move called the "backward strike," Stafstrom explained, in which they reach their legs behind them and catch insects flying through the air.

"So here comes a flying bug and somehow the spider gets information on the sound direction and its distance. The spiders time the 200-millisecond leap if the fly is within its capture zone – much like an over-the-shoulder catch. The spider gets its prey. They're accurate," coauthor Ronald Hoy, the D & D Joslovitz Merksamer Professor in the Department of Neurobiology and Behavior in the College of Arts and Sciences, told the Cornell Chronicle.

What the researchers wanted to understand was how the spiders could tell what was moving behind them when they have no ears.

It isn't a question of peripheral vision. In a 2016 study, the same team blindfolded the spiders and sent them out to hunt, Science explained. This prevented the spiders from making their forward strikes, but they were still able to catch prey using the backwards strike. The researchers thought the spiders were "hearing" their prey with the sensors on the tips of their legs. All spiders have these sensors, but scientists had previously thought they were only able to detect vibrations through surfaces, not sounds in the air.

To test how well the ogre-faced spiders could actually hear, the researchers conducted a two-part experiment.

First, they inserted electrodes into removed spider legs and into the brains of intact spiders. They put the spiders and the legs into a vibration-proof booth and played sounds from two meters (approximately 6.5 feet) away. The spiders and the legs responded to sounds from 100 hertz to 10,000 hertz.

Next, they played the five sounds that had triggered the biggest response to 25 spiders in the wild and 51 spiders in the lab. More than half the spiders did the "backward strike" move when they heard sounds that have a lower frequency similar to insect wing beats. When the higher frequency sounds were played, the spiders did not move. This suggests the higher frequencies may mimic the sounds of predators like birds.

University of Cincinnati spider behavioral ecologist George Uetz told Science that the results were a "surprise" that indicated science has much to learn about spiders as a whole. Because all spiders have these receptors on their legs, it is possible that all spiders can hear. This theory was first put forward by Walcott 60 years ago, but was dismissed at the time, according to the Cornell Chronicle. But studies of other spiders have turned up further evidence since. A 2016 study found that a kind of jumping spider can pick up sonic vibrations in the air.

"We don't know diddly about spiders," Uetz told Science. "They are much more complex than people ever thought they were."

Learning more provides scientists with an opportunity to study their sensory abilities in order to improve technology like bio-sensors, directional microphones and visual processing algorithms, Stafstrom told CNN.

Hoy agreed.

"The point is any understudied, underappreciated group has fascinating lives, even a yucky spider, and we can learn something from it," he told CNN.

EcoWatch Daily Newsletter

Financial institutions in New York state will now have to consider the climate-related risks of their planning strategies. Ramy Majouji / WikiMedia Commons

By Brett Wilkins

Regulators in New York state announced Thursday that banks and other financial services companies are expected to plan and prepare for risks posed by the climate crisis.

Read More Show Less

Trending

There are many different CBD oil brands in today's market. But, figuring out which brand is the best and which brand has the strongest oil might feel challenging and confusing. Our simple guide to the strongest CBD oils will point you in the right direction.

Read More Show Less
The left image shows the OSIRIS-REx collector head hovering over the Sample Return Capsule (SRC) after the Touch-And-Go Sample Acquisition Mechanism arm moved it into the proper position for capture. The right image shows the collector head secured onto the capture ring in the SRC. NASA / Goddard / University of Arizona / Lockheed Martin

A NASA spacecraft has successfully collected a sample from the Bennu asteroid more than 200 million miles away from Earth. The samples were safely stored and will be preserved for scientists to study after the spacecraft drops them over the Utah desert in 2023, according to the Associated Press (AP).

Read More Show Less
Exxon Mobil Refinery is seen from the top of the Louisiana State Capitol in Baton Rouge, Louisiana on March 5, 2017. WClarke / Wikimedia Commons / CC by 4.0

Exxon Mobil will lay off an estimated 14,000 workers, about 15% of its global workforce, including 1,900 workers in the U.S., the company announced Thursday.

Read More Show Less

Support Ecowatch