Quantcast
Environmental News for a Healthier Planet and Life

Harvard Is One Step Closer to Developing Cheap, Long-Lasting Battery Storage

Popular
Harvard Is One Step Closer to Developing Cheap, Long-Lasting Battery Storage
Winds of change … a storage system for energy generated by renewables is closer to being realized. Photo credit: Sheila Sund / Flickr

By Kieran Cooke

It is the holy grail of the renewable energy sector—a cheap and efficient battery system that can store energy generated by renewables such as wind and solar.

These days there are few who doubt the potential of renewables, except those diehards on the extreme of the fossil fuel industry.

According to the International Energy Agency (IEA)—the main body monitoring developments in the global energy sector—renewables are surging ahead.

Investment in Renewables

In 2015, investments in oil and gas—fossil fuels that, along with coal, are the main drivers of global warming—declined by 25 percent, while energy produced from renewables rose by 30 percent.

Renewables are becoming increasingly competitive with fossil fuels in many sectors: According to the IEA, in the five years to the end of 2015 the price of solar energy dropped by 80 percent and wind power by a third.

Fast-developing countries—China and India, in particular—are investing millions of dollars in the renewable sector.

The big problem with renewables development has been storage. In order to operate a commercially viable power plant, a reliable flow of fuel is needed. In the case of oil, coal or gas this is relatively straightforward as supplies can quickly be replenished.

In the case of nuclear, as long as there is a readily available supply of uranium isotopes, power can continue to be generated.

Solar and wind power supply is far more varied—dependent on sunshine and wind speeds—and cannot be stored or used in the same way as so-called conventional fuels.

For years, scientists have struggled to develop storage systems capable of handling the peaks and troughs of renewable power so that an even supply can be guaranteed.

Researchers at the John A. Paulson School of Engineering and Applied Sciences at Harvard University in the U.S. said in an article published in ACS Energy Letters that they have now developed a long-lasting flow battery capable of storing renewable power that­ could operate for up to 10 years, with minimum maintenance required.

A flow battery is a cross between a conventional battery and a fuel cell. Flow batteries store energy in liquid solutions in external tanks and are regarded as one of the primary ways of storing renewable energy. The bigger the tanks, the more energy can be stored.

But flow batteries are costly. Most use expensive polymers that can cope with the potent chemicals inside the battery.

Battery Capacity

The battery's components and materials, such as membranes and electrolytes, have to be frequently replaced in order to retain capacity.

The Harvard team modified molecules used in the electrolyte solutions to make them soluble in water and so vastly increase the battery's ability to retain power.

"Because we were able to dissolve the electrolytes in neutral water, this is a long-lasting battery that you could put in your basement," said Roy Gordon, a professor of chemistry and materials science and a leading member of the research team.

"If it spilled on the floor, it wouldn't eat the concrete and, since the medium is non-corrosive, you can use cheaper materials to build components of the batteries, like the tanks and pumps," Gordon added.

Reducing the cost of the battery is vital. The U.S. Department of Energy said that in order to make stored energy from wind and solar competitive with fossil fuels, a battery needs to be able to store energy for less than $100 per kilowatt hour.

"If you can get anywhere near this cost target then you can change the world," said Michael Aziz, another lead researcher in the battery project and a professor of materials and energy technologies at Harvard.

"It becomes cost effective to put batteries in so many places—this research puts us one step closer to reaching that target," said Aziz.

Reposted with permission from our media associate Climate News Network.

Seabirds often follow fishing vessels to find easy meals. Alexander Petrov / TASS via Getty Images

By Jim Palardy

As 2021 dawns, people, ecosystems, and wildlife worldwide are facing a panoply of environmental issues. In an effort to help experts and policymakers determine where they might focus research, a panel of 25 scientists and practitioners — including me — from around the globe held discussions in the fall to identify emerging issues that deserve increased attention.

Read More Show Less

EcoWatch Daily Newsletter

A damaged home and flooding are seen in Creole, Louisiana, following Hurricane Laura's landfall on August 27, 2020. Joe Raedle / Getty Images

By Elliott Negin

What a difference an election makes. Thanks to the Biden-Harris victory in November, the next administration is poised to make a 180-degree turn to again address the climate crisis.

Read More Show Less

Trending

The new variant, known as B.1.1.7, spread quickly through southeastern England in December, causing case numbers to spike and triggering stricter lockdown measures. Hollie Adams / Getty Images

By Suresh Dhaniyala and Byron Erath

A fast-spreading variant of the coronavirus that causes COVID-19 has been found in at least 10 states, and people are wondering: How do I protect myself now?

Read More Show Less
A seagull flies in front of the Rampion offshore wind farm in the United Kingdom. Neil / CC BY 2.0

By Tara Lohan

A key part of the United States' clean energy transition has started to take shape, but you may need to squint to see it. About 2,000 wind turbines could be built far offshore, in federal waters off the Atlantic Coast, in the next 10 years. And more are expected.

Read More Show Less

By Frank La Sorte and Kyle Horton

Millions of birds travel between their breeding and wintering grounds during spring and autumn migration, creating one of the greatest spectacles of the natural world. These journeys often span incredible distances. For example, the Blackpoll warbler, which weighs less than half an ounce, may travel up to 1,500 miles between its nesting grounds in Canada and its wintering grounds in the Caribbean and South America.

Read More Show Less