Quantcast
Environmental News for a Healthier Planet and Life

Scientists Call for Artificial Trees to Fight Climate Change

Climate
Scientists Call for Artificial Trees to Fight Climate Change
Pexels

By Marlene Cimons

Plants are humanity's greatest ally in the fight against climate change. Plants soak up carbon dioxide and turn it into leaves and branches. The more trees humans plant, the less heat-trapping carbon pollution in the air. Unfortunately, plants require a lot of water and land, so much that humans might need a new to find a new ally to help draw down all that carbon.


New research from a team of German scientists suggests that artificial photosynthesis could help. Scientists are urging the world to invest in the technology, which remains too costly to be practical.

Artificial photosynthesis imitates the process that fuels plants naturally. Like the real thing, the technology uses carbon dioxide and water as food, and sunlight as an energy source. But rather than turn that carbon dioxide and water into leaves and branches, it produces carbon-rich products, such as alcohol. The process uses a special kind of solar cell that absorbs sunlight and conveys electricity to a pool of carbon dioxide dissolved in water. Catalysts spur a chemical transformation that yields oxygen and carbon-based byproduct.

"The oxygen is then released into the air, just like plants do. The other product is captured and stored, for instance in depleted oil fields," said Matthias May, a physicist at the HZB Institute for Solar Fuels in Berlin, and a co-author of the article, published in the journal Earth System Dynamics. Artificial photosynthesis, it turns out, is more efficient than natural photosynthesis. "The big difference is that we use artificial, inorganic materials for this, which effectively allow much higher conversion efficiencies," he added. "This is exciting, as the high efficiency translates to a much lower land and water footprint." Scientists say these artificial leaves could be installed in deserts, where are there are no trees or farms already capturing carbon dioxide.

"Up to now, the main focus of the artificial photosynthesis community [has been] solar fuels," using sunlight and carbon dioxide to produce liquid fuels, May said. The problem is that when solar fuels are burned, the carbon stored within is returned to the atmosphere. May's proposed approach, however, offers a way to store that carbon underground. So, instead of recycling heat-trapping carbon dioxide, scientists would be burying it away, cooling the planet. For now, however, carbon capture in any form remains impractical and expensive. Curbing the use of fossil fuels remains the cheapest and most effective way to curb climate change.

"Curbing of emissions will always be the cheaper and more attractive approach," May said. "But as the development of new [carbon capture] technologies—especially to the vast scales we will probably require—takes decades, and we might already have to start implementing them as soon as 2030, we do have to discuss and evaluate the options now rather than later." Even the more modest proposals for halting climate change call for removing 10 gigatons of carbon dioxide per year by 2050, which is approximately one quarter of all human-caused carbon pollution in 2018, May said.

Achieving these goals via natural photosynthesis would be difficult given the amount of water and land required. Artificial photosynthesis could offer a workable alternative. May said that an area roughly the size of Hawaii covered in artificial leaves could capture as much carbon dioxide as an area the size of Europe covered in the most carbon-hungry plants.

The technological challenge is to develop cheap, efficient catalysts and durable solar cells. "This will require a long-lasting, worldwide research effort, probably similar to fusion energy, which does, however, not guarantee success in due time," he said. Countries would also need to find a way to pay for it.

Artificial photosynthesis is but one of many possibilities, May said. "For now, it is difficult to say which technology will be the most feasible," May said. But, although artificial photosynthesis could be among the most expensive, "the potential of the technology is huge," May said.

Reposted with permission from our media associate Nexus Media.

Radiation-contaminated water tanks and damaged reactors at the Fukushima Daiichi nuclear power plant on Feb. 25, 2016 in Okuma, Japan. Christopher Furlong / Getty Images

Japan will release radioactive wastewater from the failed Fukushima nuclear plant into the Pacific Ocean, the government announced on Tuesday.

Read More Show Less
EcoWatch Daily Newsletter
Antarctica's Thwaites Glacier, aka the doomsday glacier, is seen here in 2014. NASA / Wikimedia Commons / CC0

Scientists have maneuvered an underwater robot beneath Antarctica's "doomsday glacier" for the first time, and the resulting data is not reassuring.

Read More Show Less
Trending
Journalists film a protest by the environmental organization BUND at the Datteln coal-fired power plant in North Rhine-Westphalia, Germany on April 23, 2020. Bernd Thissen / picture alliance via Getty Images

By Jessica Corbett

Lead partners of a global consortium of news outlets that aims to improve reporting on the climate emergency released a statement on Monday urging journalists everywhere to treat their coverage of the rapidly heating planet with the same same level of urgency and intensity as they have the COVID-19 pandemic.

Read More Show Less
Airborne microplastics are turning up in remote regions of the world, including the remote Altai mountains in Siberia. Kirill Kukhmar / TASS / Getty Images

Scientists consider plastic pollution one of the "most pressing environmental and social issues of the 21st century," but so far, microplastic research has mostly focused on the impact on rivers and oceans.

Read More Show Less
A laborer works at the site of a rare earth metals mine at Nancheng county, Jiangxi province, China on Oct. 7, 2010. Jie Zhao / Corbis via Getty Images

By Michel Penke

More than every second person in the world now has a cellphone, and manufacturers are rolling out bigger, better, slicker models all the time. Many, however, have a bloody history.

Read More Show Less