Quantcast

Earlier Arctic Rain Is Leading to 'Methane Emissions Going Bonkers'

Climate
Methane bubbles trapped in ice in a Canadian lake. John Bakator on Unsplash

By Tim Radford

As the global temperature steadily rises, it ensures that levels of one of the most potent greenhouse gases are increasing in a way new to science: the planet will have to reckon with more methane than expected.

Researchers who monitored one bog for three years in the Alaskan permafrost have identified yet another instance of what engineers call positive feedback. They found that global warming meant earlier springs and with that, earlier spring rains.


And as a consequence, the influx of warm water on what had previously been frozen ground triggered a biological frenzy that sent methane emissions soaring.

One stretch of wetland in a forest of black spruce in the Alaskan interior stepped up its emissions of natural gas (another name for methane) by 30 percent. Methane is a greenhouse gas at least 30 times more potent than carbon dioxide.

As a consequence, climate scientists may have to return yet again to the vexed question of the carbon budget, in their calculations of how fast the world will warm as humans burn more fossil fuels, to set up ever more rapid global warming and climate change, which will in turn accelerate the thawing of the permafrost.

The evidence so far comes from a detailed study of water, energy and carbon traffic from just one wetland. But other teams of scientists have repeatedly expressed concern about the integrity of the northern hemisphere permafrost and the vast stores of carbon preserved in the frozen soils, beneath the shallow layer that comes to life with each Arctic spring.

"We saw the plants going crazy and methane emissions going bonkers," said Rebecca Neumann, an environmental engineer at the University of Washington in Seattle, who led the study. "2016 had above average rainfall, but so did 2014. So what was different about this year?"

What mattered was when the rain fell: it fell earlier, when the ground was still colder than the air. The warmer water saturated the frozen forest, flowed into the bog, and created a local permafrost thaw in anoxic conditions: the subterranean microbial communities responded by converting the once-frozen organic matter into a highly effective greenhouse gas.

Alarm Rises

"It'd be the bottom of the barrel in terms of energy production for them," Neumann said. "The microbes in this bog on some level are like 'Oh man, we're stuck making methane because that's all this bog is allowing us to do'."

As global average temperature levels creep up, so does alarm about the state of the vast tracts of permafrost, home to huge stores of frozen carbon in the form of semi-decayed plant material that could be released into the atmosphere to fuel further global warming, with devastating consequences.

Spring has been arriving earlier everywhere in the northern hemisphere, including the Arctic, with unpredictable impacts on high latitude ecosystems.

The permafrost itself has been identified as a vulnerable region, change in which could tip the planet into a new and unpredictable climate regime, and geographers only this year have started to assess the direct hazard to the communities that live in the high latitudes as once-solid ground turns to slush under their feet.

More Evaporation

Much more difficult to assess is how the steady attrition of the permafrost plays out in terms of the traffic of carbon between rocks, ocean, atmosphere and living things: researchers are still teasing out the roles of all the agencies at work, including subterranean microbes.

In a warmer world, evaporation will increase. Warmer air has a greater capacity for water vapor. In the end, it means more rain will fall. If it falls in spring or early summer, the research from one marshland in Alaska seems to suggest, more methane will escape into the atmosphere.

Right now, the rewards of the study are academic. They throw just a little more light on the subtle machinery of weather and climate. The test is whether what happens in one instance is likely to happen in other, similar terrain around the high latitudes.

"The ability of rain to transport thermal energy into soils has been under-appreciated," Neumann said. "Our study shows that by affecting soil temperature and methane emissions, rain can increase the ability of thawing permafrost to warm the climate."

Reposted with permission from our media associate Climate News Network.

EcoWatch Daily Newsletter

Rhodiola rosea is an adaptogenic herb that can help with chronic fatigue and stress-related burnout. Tero Laakso / Flickr

By Gavin Van De Walle, MS, RD

While everyone has specific life stressors, factors related to job pressure, money, health, and relationships tend to be the most common.

Stress can be acute or chronic and lead to fatigue, headaches, upset stomach, nervousness, and irritability or anger.

Read More Show Less
A video shows a woman rescuing a koala from Australia's wildfires. VOA News / YouTube screenshot

More than 350 koalas may have died in the wildfires raging near the Australian town of Port Macquarie in New South Wales, but one got a chance at survival after a woman risked her life to carry him to safety.

Read More Show Less
Sponsored
American bison roaming Badlands National park, South Dakota. Prisma / Dukas / Universal Images Group / Getty Images

By Clay Bolt

On Oct. 11 people around the world celebrated the release of four plains bison onto a snow-covered butte in Badlands National Park, South Dakota.

Read More Show Less
An EPA sponsored cleanup of the toxic Gowanus Canal dredges a section of the canal of industrial debris on Oct. 28, 2016 in Brooklyn. The Gowanus is a Superfund site from years of industrial waste spilling into the water, and it is listed in GAO's report to be at risk from a climate disaster. Andrew Lichtenstein / Corbis / Getty Images

The climate crisis has put at least 945 designated toxic waste sites at severe risk of disaster from escalating wildfires, floods, rising seas and other climate-related disasters, according to a new study from the non-partisan Government Accountability Office (GAO), as the AP reported.

Read More Show Less
(L) Selma Three Stone Engagement Ring. (R) The Greener Diamond Farm Project. MiaDonna

By Bailey Hopp

If you had to choose a diamond for your engagement ring from below or above the ground, which would you pick … and why would you pick it? This is the main question consumers are facing when picking out their diamond engagement ring today. With a dramatic increase in demand for conflict-free lab-grown diamonds, the diamond industry is shifting right before our eyes.

Read More Show Less