Quantcast
Environmental News for a Healthier Planet and Life

Giant Waterfall in Antarctica Worries Scientists

Popular
A 130-metre-wide waterfall drains meltwater from the Nansen Ice Shelf into the ocean. Stuart Rankin via Flickr

By Tim Radford

Scientists poring over military and satellite imagery have mapped the unimaginable: a network of rivers, streams, ponds, lakes and even a waterfall, flowing over the ice shelf of a continent with an annual mean temperature of more than -50C.


In 1909 Ernest Shackleton and his fellow explorers on their way to the magnetic South Pole found that they had to cross and recross flowing streams and lakes on the Nansen Ice Shelf.

Antarctic Waterways

Now, U.S. scientists report in the journal Nature that they studied photographs taken by military aircraft from 1947 and satellite images from 1973 to identify almost 700 seasonal networks of ponds, channels and braided streams flowing from all sides of the continent, as close as 600km to the South Pole and at altitudes of 1,300 meters.

And they found that such systems carried water for 120km. A second research team reporting a companion study in the same issue of Nature identified one meltwater system with an ocean outflow that ended in a 130-meter wide waterfall, big enough to drain the entire surface melt in a matter of days.

In a world rapidly warming as humans burn ever more fossil fuels, to add ever more greenhouse gases into the atmosphere, researchers expect to observe an increase in the volume of meltwater on the south polar surface. Researchers have predicted the melt rates could double by 2050. What isn't clear is whether this will make the shelf ice around the continent—and shelf ice slows the flow of glaciers from the polar hinterland—any less stable.

"This is not in the future—this is widespread now, and has been for decades," said Jonathan Kingslake, a glaciologist at Columbia University's Lamont-Doherty Earth Observatory, who led the research.

"I think most polar scientists have considered water moving across the surface of Antarctica to be extremely rare. But we found a lot of it, over very large areas."

The big question is: has the level of surface melting increased in the last seven decades? The researchers don't yet have enough information to make a judgment.

"We have no reason to think they have," Dr Kingslake said. "But without further work, we can't tell. Now, looking forward, it will be really important to work out how these systems will change in response to warming, and how this will affect the ice sheets."

Many of the flow systems seem to start in the Antarctic mountains, near outcrops of exposed rock, or in places where fierce winds have scoured snow off the ice beneath. Rocks are dark, the exposed ice is of a blue colour, and during the long days of the Antarctic summer both would absorb more solar energy than white snow or ice. This would be enough to start the melting process.

The Antarctic is already losing ice, as giant floating shelves suddenly fracture and drift north. There is a theory that meltwater could be part of the fissure mechanism, as it seeps deep into the shelves.

Drainage Theory

But the companion study, led by the polar scientist Robin Bell of the Lamont-Doherty Observatory suggests that drainage on the Nansen Ice Shelf might help to keep the ice intact, perhaps by draining away the meltwater in the dramatic waterfall the scientists had identified.

"It could develop this way in other places, or things could just devolve into giant slush puddles," she said. "Ice is dynamic, and complex, and we don't have the data yet."

EcoWatch Daily Newsletter

Moroccan patients who recovered from the novel coronavirus disease celebrate with medical staff as they leave the hospital in Sale, Morocco, on April 3, 2020. AFP / Getty Images

By Tom Duszynski

The coronavirus is certainly scary, but despite the constant reporting on total cases and a climbing death toll, the reality is that the vast majority of people who come down with COVID-19 survive it. Just as the number of cases grows, so does another number: those who have recovered.

In mid-March, the number of patients in the U.S. who had officially recovered from the virus was close to zero. That number is now in the tens of thousands and is climbing every day. But recovering from COVID-19 is more complicated than simply feeling better. Recovery involves biology, epidemiology and a little bit of bureaucracy too.

Read More Show Less
Reef scene with crinoid and fish in the Great Barrier Reef, Australia. Reinhard Dirscherl / ullstein bild / Getty Images

By Elizabeth Claire Alberts

The future for the world's oceans often looks grim. Fisheries are set to collapse by 2048, according to one study, and 8 million tons of plastic pollute the ocean every year, causing considerable damage to delicate marine ecosystems. Yet a new study in Nature offers an alternative, and more optimistic view on the ocean's future: it asserts that the entire marine environment could be substantially rebuilt by 2050, if humanity is able to step up to the challenge.

Read More Show Less
Sponsored
A daughter touches her father's head while saying goodbye as medics prepare to transport him to Stamford Hospital on April 02, 2020 in Stamford, Connecticut. He had multiple COVID-19 symptoms. John Moore / Getty Images

Across the country, the novel coronavirus is severely affecting black people at much higher rates than whites, according to data released by several states, as The New York Times reported.

Read More Show Less
Four rolls of sourdough bread are arranged on a surface. Photo by Laura Chase de Formigny and food styling by Lisa Cherkasky for The Washington Post / Getty Images

By Zulfikar Abbany

Bread has been a source of basic nutrition for centuries, the holy trinity being wheat, maize and rice. It has also been the reason for a lot of innovation in science and technology, from millstones to microbiological investigations into a family of single-cell fungi called Saccharomyces.

Read More Show Less

Trending

A coral reef in Egypt's Red Sea. Tropical ocean ecosystems could see sudden biodiversity losses this decade if emissions are not reduced. Georgette Douwma / Stone / Getty Images

The biodiversity loss caused by the climate crisis will be sudden and swift, and could begin before 2030.

Read More Show Less