Microplastics Found in Antarctic Sea Ice Samples for First Time, Scientists Say

For the first time, microscopic plastic pollution has been found in Antarctic sea ice samples collected more than a decade ago, suggesting that microplastic concentrations in Southern Sea ice may be higher than previously believed.
A total of 96 microplastic particles from 14 different types of polymer were discovered in an ice core sample collected from Casey Station located in East Antarctica in 2009. As ice freezes in the region, scientists believe that small pieces of plastic may become trapped in ice, which acts as a reservoir for pollution until it is released again by ice melt.
"The remoteness of the Southern Ocean has not been enough to protect it from plastic pollution, which is now pervasive across the world's oceans," said lead study author Anna Kelly who published her findings in Marine Pollution Bulletin.
Plastic particles measuring less than 5 millimeters have become common in remote marine habitats, from nearly every corner of the world to the bellies of the world's most remote organisms. Since researchers began tracing microplastics six years ago, they have found plastic pollution in Antarctic surface waters and sediments as well as in Arctic sea ice. Though these regions are remote, concentrations of microplastics have been found to rival those found in more urban settings.
"Forming from seawater, around 80 percent of Antarctic sea ice melts and reforms each year, providing seasonal opportunities for microplastics on the sea surface to become trapped in the ice," said Kelly, who worked with a team of scientists from the Institute for Marine and Antarctic Studies and the Australian Antarctic Division. Researchers wore a Tyvek suit both when collecting the ice core and when processing it, and a cotton lab coat was worn 11 years later to prevent potential cross-contamination.
An average of nearly 12 particles of microplastic were found in every examined liter of coastal land-fast sea ice, which is sea ice "fastened" to the coastline, according to the Polar Science Center. This number is slightly lower than what previous studies in polar regions have detected, but the overall size of each was larger, which indicate that the pollution came from local sources as it had "less time to break down into smaller fibers than if transported long distances on ocean currents."
"Local sources could include clothing and equipment used by tourists and researchers, while the fact that we also identified fibers of varnish and plastics commonly used in the fishing industry suggests a maritime source," Kelly said.
It could be that tourists or scientific researchers visiting the continent contribute microplastic pollution from their clothing fibers and other equipment, especially considering that the ice core sample was collected near a research facility that sees a steady stream of visitors. Microplastics trapped in ice rather than sinking to the deep ocean allows the pollutants to "persist for longer near the surface," making them more likely to be consumed by small marine organisms like krill who mistake it for food. Additionally, the findings suggest that sea ice could serve as a reservoir for microplastic debris in the Southern Ocean, posing potential biogeochemistry consequences.
"It is worth noting that plastic contamination of West Antarctic sea ice may be even greater than in our ice core from the East, as the Antarctic Peninsula hosts the bulk of the continent's tourism, research stations and marine traffic," said Kelly.
The researchers conclude that the findings present a "crucial need for stringent methods" when it comes to both to recovering and measuring microplastic particles from polar regions.
- Plastic Contaminants Found in Eggs of Some of the World's Most ... ›
- Plastic Pollution in Antarctica 5 Times Worse Than Expected ... ›
- Researchers Find Record Levels of Microplastics in Arctic Sea Ice ›
- Ocean Microplastics Are Drastically Underestimated, New Research Suggests - EcoWatch ›
- Microplastics Found in Antarctica's Food Chain for First Time - EcoWatch ›
- Microplastics Found in Human Organs for First Time - EcoWatch ›
A federal court on Tuesday struck down the Trump administration's rollback of the Obama-era Clean Power Plan regulating greenhouse gas emissions from power plants.
- Pruitt Guts the Clean Power Plan: How Weak Will the New EPA ... ›
- It's Official: Trump Administration to Repeal Clean Power Plan ... ›
- 'Deadly' Clean Power Plan Replacement ›
EcoWatch Daily Newsletter
By Jonathan Runstadler and Kaitlin Sawatzki
Over the course of the COVID-19 pandemic, researchers have found coronavirus infections in pet cats and dogs and in multiple zoo animals, including big cats and gorillas. These infections have even happened when staff were using personal protective equipment.
Gorillas have been affected by human viruses in the past and are susceptible to the coronavirus. Thomas Fuhrmann via Wikimedia Commons, CC BY-SA
- Gorillas in San Diego Test Positive for Coronavirus - EcoWatch ›
- Wildlife Rehabilitators Are Overwhelmed During the Pandemic. In ... ›
- Coronavirus Pandemic Linked to Destruction of Wildlife and World's ... ›
- Utah Mink Becomes First Wild Animal to Test Positive for Coronavirus ›
Trending
By Peter Giger
The speed and scale of the response to COVID-19 by governments, businesses and individuals seems to provide hope that we can react to the climate change crisis in a similarly decisive manner - but history tells us that humans do not react to slow-moving and distant threats.
A Game of Jenga
<p>Think of it as a game of Jenga and the planet's climate system as the tower. For generations, we have been slowly removing blocks. But at some point, we will remove a pivotal block, such as the collapse of one of the major global ocean circulation systems, for example the Atlantic Meridional Overturning Circulation (AMOC), that will cause all or part of the global climate system to fall into a planetary emergency.</p><p>But worse still, it could cause runaway damage: Where the tipping points form a domino-like cascade, where breaching one triggers breaches of others, creating an unstoppable shift to a radically and swiftly changing climate.</p><p>One of the most concerning tipping points is mass methane release. Methane can be found in deep freeze storage within permafrost and at the bottom of the deepest oceans in the form of methane hydrates. But rising sea and air temperatures are beginning to thaw these stores of methane.</p><p>This would release a powerful greenhouse gas into the atmosphere, 30-times more potent than carbon dioxide as a global warming agent. This would drastically increase temperatures and rush us towards the breach of other tipping points.</p><p>This could include the acceleration of ice thaw on all three of the globe's large, land-based ice sheets – Greenland, West Antarctica and the Wilkes Basin in East Antarctica. The potential collapse of the West Antarctic ice sheet is seen as a key tipping point, as its loss could eventually <a href="https://science.sciencemag.org/content/324/5929/901" target="_blank">raise global sea levels by 3.3 meters</a> with important regional variations.</p><p>More than that, we would be on the irreversible path to full land-ice melt, causing sea levels to rise by up to 30 meters, roughly at the rate of two meters per century, or maybe faster. Just look at the raised beaches around the world, at the last high stand of global sea level, at the end of the Pleistocene period around 120,0000 years ago, to see the evidence of such a warm world, which was just 2°C warmer than the present day.</p>Cutting Off Circulation
<p>As well as devastating low-lying and coastal areas around the world, melting polar ice could set off another tipping point: a disablement to the AMOC.</p><p>This circulation system drives a northward flow of warm, salty water on the upper layers of the ocean from the tropics to the northeast Atlantic region, and a southward flow of cold water deep in the ocean.</p><p>The ocean conveyor belt has a major effect on the climate, seasonal cycles and temperature in western and northern Europe. It means the region is warmer than other areas of similar latitude.</p><p>But melting ice from the Greenland ice sheet could threaten the AMOC system. It would dilute the salty sea water in the north Atlantic, making the water lighter and less able or unable to sink. This would slow the engine that drives this ocean circulation.</p><p><a href="https://www.carbonbrief.org/atlantic-conveyor-belt-has-slowed-15-per-cent-since-mid-twentieth-century" target="_blank">Recent research</a> suggests the AMOC has already weakened by around 15% since the middle of the 20th century. If this continues, it could have a major impact on the climate of the northern hemisphere, but particularly Europe. It may even lead to the <a href="https://ore.exeter.ac.uk/repository/handle/10871/39731?show=full" target="_blank" rel="noopener noreferrer">cessation of arable farming</a> in the UK, for instance.</p><p>It may also reduce rainfall over the Amazon basin, impact the monsoon systems in Asia and, by bringing warm waters into the Southern Ocean, further destabilize ice in Antarctica and accelerate global sea level rise.</p>The Atlantic Meridional Overturning Circulation has a major effect on the climate. Praetorius (2018)
Is it Time to Declare a Climate Emergency?
<p>At what stage, and at what rise in global temperatures, will these tipping points be reached? No one is entirely sure. It may take centuries, millennia or it could be imminent.</p><p>But as COVID-19 taught us, we need to prepare for the expected. We were aware of the risk of a pandemic. We also knew that we were not sufficiently prepared. But we didn't act in a meaningful manner. Thankfully, we have been able to fast-track the production of vaccines to combat COVID-19. But there is no vaccine for climate change once we have passed these tipping points.</p><p><a href="https://www.weforum.org/reports/the-global-risks-report-2021" target="_blank">We need to act now on our climate</a>. Act like these tipping points are imminent. And stop thinking of climate change as a slow-moving, long-term threat that enables us to kick the problem down the road and let future generations deal with it. We must take immediate action to reduce global warming and fulfill our commitments to the <a href="https://www.ipcc.ch/sr15/" target="_blank" rel="noopener noreferrer">Paris Agreement</a>, and build resilience with these tipping points in mind.</p><p>We need to plan now to mitigate greenhouse gas emissions, but we also need to plan for the impacts, such as the ability to feed everyone on the planet, develop plans to manage flood risk, as well as manage the social and geopolitical impacts of human migrations that will be a consequence of fight or flight decisions.</p><p>Breaching these tipping points would be cataclysmic and potentially far more devastating than COVID-19. Some may not enjoy hearing these messages, or consider them to be in the realm of science fiction. But if it injects a sense of urgency to make us respond to climate change like we have done to the pandemic, then we must talk more about what has happened before and will happen again.</p><p>Otherwise we will continue playing Jenga with our planet. And ultimately, there will only be one loser – us.</p>By John R. Platt
The period of the 45th presidency will go down as dark days for the United States — not just for the violent insurgency and impeachment that capped off Donald Trump's four years in office, but for every regressive action that came before.
- Biden Announces $2 Trillion Climate and Green Recovery Plan ... ›
- How Biden and Kerry Can Rebuild America's Climate Leadership ... ›
- Biden's EPA Pick Michael Regan Urged to Address Environmental ... ›
- How Joe Biden's Climate Plan Compares to the Green New Deal ... ›
Washington state residents are taking climate matters into their own hands. Beginning this month, 90 members of the public join the country's first climate assembly to develop pollution solutions, Crosscut reported.