Quantcast
Environmental News for a Healthier Planet and Life

Help Support EcoWatch

10 Groundbreaking Solutions for a Sustainable Planet

Climate

Today, sustainability think tank Sustainia and partners announced a top-10 of leading sustainability innovations for 2015. The 10 projects and technologies are finalists for international honor, Sustainia Award, which identifies and celebrates groundbreaking sustainability solutions from all over the world.

Sustainia’s Award Committee, led by Arnold Schwarzenegger, will now review the finalists, which come from nine different countries and cover everything from new ways of financing climate mitigation projects in cities, leasing models for baby clothes, citizen engagement projects for energy consumption and solar rechargeable hearing aids.

These top 100 sustainability solutions were selected after reviewing more than 1,500 projects and businesses on six continents:

The Sustainia Award Committee counts five jury members: Former Governor of California Arnold Schwarzenegger, Executive Secretary of the UNFCCC Christiana Figueres, Former Norwegian Prime Minister Gro Harlem Brundtland, Former Chair of The Intergovernmental Panel on Climate Change Rajendra K. Pachauri and Former EU Commissioner Connie Hedegaard. The public is also part of the celebrations. Starting today, everyone can vote for their favorite innovation among the 10 nominees. The finalist with most public votes will bring home the Sustainia Community Award.

Both winners are announced at the Sustainia Award Ceremony on Dec. 6 in Paris during the COP21. With the newly ratified Sustainable Development Goals and the negotiations for a new binding climate agreement at COP21, it’s enough with the talk and all about action—the readily available solutions. These solutions, the real change makers, are already now working in the market and will be needed in a changing world of climate change—no matter the outcome of COP21. The Award Ceremony gathers innovators and performers from around the world to celebrate solutions for a sustainable tomorrow.

Here are the top 10 leading sustainability innovations for 2015:

Buildings Finalist: Archiblox (Australia), Energy-Positive Prefabricated House

More than 15 percent of the world’s total energy consumption is used in residential homes. Archiblox has created a prefabricated house with minimal energy usage and environmental footprint that is liveable, accessible, and affordable. The prefabricated modular design makes construction more energy efficient. When in place, the home generates more electricity than it uses. The energy efficiency is achieved with the use of double-glazed windows, solar panels and water-efficient fixtures. Sliding flexible garden walls reduce sunlight infiltration in the summer; in winter, the walls are retracted to achieve a tighter thermal envelope. The structure’s small size, 53m 2, also ensures a reduction in electricity consumption, while its open plan maximizes usable area. The prefabricated modules can be flexibly composed, and installation takes just five weeks.

Food Finalist: SunCulture (USA), Solar-Powered Drip Irrigation for Smallholders

More than 80 percent of Kenya experiences low and unpredictable rainfall. Farmers are therefore unable to rely on rain-fed agriculture to meet their subsistence needs. Although diesel and treadle pumps are available in the market, the effectiveness of these technologies is constrained by high fuel costs and labor inefficiencies. Instead, SunCulture’s system relies on a renewable energy source and the solar-powered drip irrigation system delivers water directly to crop roots, resulting in yield gains of up to 300 percent and water savings of up to 80 percent, according to the company. Over 250 systems have been installed in Kenya, with a payback period of one three-month growing season based on fuel, fertilizer and labor savings in addition to increased crop yields. To increase access, SunCulture also offers various payment options, including a financing scheme.

Read page 1

Fashion Finalist: Vigga (Denmark), Leasing Organic Kids’ Wear

The standard linear model of clothing consumption is characterized by a use and throw-away behaviour pattern. Kids’ wear is no exception, since children outgrow their clothing quickly, thereby forcing parents to take part in highly unsustainable garment consumption. Vigga is a subscription service that enables parents to lease organic children’s wear saving time, money, and resources. The carbon footprint of a fabric’s lifecycle has been estimated to be 12.5 kg of CO2 per kg of fabric. By having a circular business model for leasing out clothes, Vigga reduces the need for new clothes and at the same time offers sustainable kids’ wear at a competitive price. A Danish family can save up to $2,100 the first year of parenting by subscribing to Vigga instead of buying the baby clothes from new.

www.danielstjerne.com

Transportation Finalist: Corporation of Chennai, Institute for Transportation & Development Policy and Chennai City Connect Foundation (India), Designing Streets for Walking and Biking

With more than 10,000 traffic crashes reported every year, Chennai has one of the highest rates of road deaths in India. In June 2012, the city government launched the Chennai Street Design Project to address this problem. This project aims to reclaim the city’s streets for pedestrians and cyclists by prioritizing modes of transport other than private automobiles. The policy requires at least 60 percent of the city’s transport budget be allocated to constructing and maintaining infrastructure for nonmotorized transit. This includes widening sidewalks, building safe bicycle infrastructure, better managing intersections, and even implementing street furniture. By 2018, the city aims to have built safe and continuous footpaths on at least 80 percent of all streets, increase the share of walking and cycling trips to over 40%, and, most significantly, eliminate pedestrian and cyclist deaths.

IT Finalist: Mapdwell, Massachusetts Institute of Technology (USA), 3D Solar Potential Mapping Tool

Solar power is an abundant clean natural energy resource. Yet, in the U.S., less than 1 percent of electricity production is solar power. Built upon technology developed by Mapdwell, the company creates detailed 3D solar models of entire cities, complete with building geometry and tree foliage. The tool crunches vast datasets and complex 3D data to visualize rooftop solar potential across communities for every hour of every day, based on historical weather data. End users in the mapped cities and communities simply type in their address to access detailed information for their property and the costs and benefits for going solar. They can then custom build a solar system based on how much they want to spend, how much electricity they want to generate, and other priorities. The tool is designed to provide everyone with the facts to support solar adoption, based on a powerful and scalable platform that allows any community to discover their untapped solar resources.

Education Finalist: Seoul Metropolitan Government (South Korea), Citizen Engagement for Voluntary Behavior Change

Seoul’s Eco-Mileage System is a citizen participation project that rewards households and commercial buildings with refunds based on reductions in greenhouse gas emissions.With buildings and households accounting for 68.5 percent of Seoul’s greenhouse gas emissions, in 2009 the Seoul Metropolitan Government decided to incentivize voluntary energy conservation measures. Within a few years, this system has been successful in both reducing emissions and engaging citizens. By means of this Eco-Mileage program, households and businesses in Seoul receive financial rewards for reducing their electricity, water, gas, or district heating consumption by at least 10% compared to the previous two years. Participants are able to track their progress via an online platform, which provides energy conservation tips. Energy consultants are also available to provide tailored advice. According to the solution, around 1.46 million tons of CO2 emissions have been avoided since the program was founded.

Energy Finalist: Mobisol (Germany), Micro-Financed Off Grid Solar Power

The electrification rate in rural Africa is around 15 percent to 20 percent. These households thus rely on noxious kerosene for lighting and diesel generators for appliances. Mobisol’s solution provides reliable solar electricity paid for via a mobile payment system enabling users to power devices such as lights, phones, radio, and TV in off-grid areas without environmental damage. The solar home systems are connected to a battery, and the excess electricity produced can be used to run businesses such as mobile phone charging services and barbershops, which generate extra income and benefit the local economy. Mobisol systems come with an extended warranty and a full service package for three years, including free maintenance. Through an integrated GSM modem, technical data are tracked and monitored in a Web-based interface, enabling technicians to identify problems and make repairs within 48 hours.

Health Finalist: Solar Ear (Brazil), Solar-Powered Hearing Aids with Open Source Design

Solar Ear is a social business that manufactures, assembles, and distributes digital hearing aids with solar battery chargers based on a technology that is shared freely. The batteries, costing only $0.50 more than disposable alternatives, last up to three years as opposed to approximately one week. They are also compatible with 95 percent of hearing aids on the market, greatly reducing reliance on expensive and polluting zinc-air batteries. The World Health Organization estimates that 360 million people suffer from hearing loss globally. In developing countries, approximately 32 million hearing aids are needed annually, yet only around 750,000 are provided. Solar Ear’s approach is designed to meet this gap in supply, as it shares its technology, business model, and program protocols for free to like-minded social businesses. It is also developing a smartphone app designed to make screening accessible to millions.

Cities Finalist: City of Johannesburg (South Africa), Green Bonds Finance City Climate Action

The city of Johannesburg has issued green bonds that finance investments for projects mitigating climate change via renewable energy and sustainable urban infrastructure. Johannesburg’s green bonds are worth approximately $143 million, and will help fill gaps in much-needed development finance for climate-friendly city projects. One of the city council’s green programs includes the installation of 43,000 solar water heaters that will collectively save the equivalent of 22.5 gigawatthours of electricity a year. Green bonds have taken off over the past year as a new source of funding, with great potential to drive sustainable developments. According to the World Bank, 2014 was a record year for the green bond market, which more than tripled compared to the year before and reached more than $35 billion in new issuances. The City of Johannesburg experienced great interest from investors as the bond auction in 2014 was 150 percent oversubscribed.

Resources Finalist: Plastic Bank (Canada), Turning Plastic Waste into a Currency

Plastic pollution is a growing problem with as much as 12.7 million tons of plastic washing into the ocean each year and littering beaches across the globe. Rather than viewing it as garbage, Plastic Bank empowers local communities by offering them the chance to collect this waste, bring it to a Plastic Bank facility where it can be recycled and repurposed, and receive necessary goods and tools in exchange. The company also offers collectors access to 3D printers, enabling them to create goods for themselves and their community, and become small-scale entrepreneurs by selling items they’ve created. Plastic Bank also encourages businesses to take part in this initiative by buying Social Plastic—the recycled material from the company’s facilities. In doing so, Plastic Bank not only empowers disadvantaged communities to recycle their local waste and improve their livelihoods, but also encourages corporations to become more conscious of ethical plastic sourcing.

YOU MIGHT ALSO LIKE

Larry David as Bernie Sanders on Saturday Night Live: ‘We Need a Revolution’

Real Climate Action Starts With What’s on Your Plate

10 Greenest Cities in the World

Former WWII Bomb Shelter Now World’s First Underground Farm

EcoWatch Daily Newsletter

Cyclists ride through an intersection in downtown Brooklyn on July 30, 2019 in New York City. Drew Angerer / Getty Images

Mayors from some of the world's major cities have unveiled their vision for how the world can recover from the coronavirus pandemic while encouraging environmental justice and fighting the climate crisis.

Read More Show Less
A woman wears a face mask at a Walmart store in Washington, DC on July 15, 2020. ANDREW CABALLERO-REYNOLDS / AFP via Getty Images

Walmart, the world's largest retailer, will start requiring next week that all its stores in the U.S. deny entry to any customer not wearing a mask, as CNN reported. The announcement comes after months of a pandemic that has led to more than 3.5 million coronavirus cases and more than 130,000 deaths nationwide.

Read More Show Less
Agencies in California, Washington and British Columbia are sharing data and strategies to protect forests from wildfires. Joe Mabel / Wikimedia Commons / CC by 4.0

Some of the largest wildfires on record have swept across the West in recent years.

Read More Show Less
Start-up ARC Marine has created a plastic-free alternative to help restore marine biodiversity. ARC Marine

By Douglas Broom

Artificial reefs play an important role in protecting offshore installations like wind farms. Unprotected, the turbine masts are exposed to tidal scouring, undermining their foundations.

Read More Show Less
New research shows that there's actually a larger quantity of plastic in the ocean than previously thought. Susan White / USFWS / Flickr / CC by 2.0

By Elizabeth Claire Alberts

In 1997, Charles Moore was sailing a catamaran from Hawaii to California when he and his crew got stuck in windless waters in the North Pacific Ocean. As they motored along, searching for a breeze to fill their sails, Moore noticed that the ocean was speckled with "odd bits and flakes," as he describes it in his book, Plastic Ocean. It was plastic: drinking bottles, fishing nets, and countless pieces of broken-down objects.

"It wasn't an eureka moment … I didn't come across a mountain of trash," Moore told Mongabay. "But there was this feeling of unease that this material had got [as] far from human civilization as it possibly could."

Captain Charles Moore looking at a piece of floating plastic in the ocean. Algalita Marine Research and Education

Moore, credited as the person who discovered what's now known as the Great Pacific Garbage Patch, returned to the same spot two years later on a citizen science mission. When he and his crew collected water samples, they found that, along with larger "macroplastics," the seawater was swirling with tiny plastic particles: microplastics, which are defined as anything smaller than 5 millimeters but bigger than 1 micron, which is 1/1000th of a millimeter. Microplastics can form when larger pieces of plastics break down into small particles, or when tiny, microscopic fibers detach from polyester clothing or synthetic fishing gear. Other microplastics are deliberately manufactured, such as the tiny plastic beads in exfoliating cleaners.

"That's when we really had the eureka moment," Moore said. "When we pulled in that first trawl, which was outside of what we thought was going to be the center [of the gyre], and found it was full of plastic. Then we realized, 'Wow, this is a serious situation.'"

Captain Charles Moore holding up a jar of plastic-filled seawater from a research expedition in 2009. Algalita Marine Research and Education

Since Moore's discovery of the plastic-swirling gyres, there's been a growing amount of research to try and understand the scale of the plastic pollution issue, including several studies from 2020. This new research shows that there's actually a larger quantity of plastic in the ocean than previously thought, and that the plastic even enters the atmosphere and blows back onto land with the sea breeze. Recent studies also indicate that plastic is infiltrating our bodies through food and drinking water. The upshot is that plastic is ubiquitous in the ocean, air, food supply, and even in our own bodies. The new picture that is emerging, scientists say, is of a biosphere permeated with plastic particles right down to the very tissues of humans and other living things, with consequences both known and unknown for the lifeforms on our planet.

How Much Is Really in the Ocean?

In the past 70 years, virgin plastic production has increased 200-fold, and has grown at a rate of 4% each year since 2000, according to a 2017 study in Science Advances. Only a small portion of plastics are recycled, and about a third of all plastic waste ends up in nature, another study suggests.

While new research indicates that plastic is leaking into every part of the natural world, the ocean has long been a focal point of the plastic pollution issue. But how much is actually in the sea?

Moore says it's "virtually impossible" to get an accurate estimate because of the ongoing production of plastic, and the tendency for plastic to break down into microplastics.

"This count is constantly increasing, and it's increasing at a very rapid rate," he said. "It's a moving target."

One commonly cited study, for which Moore acted as a co-author, estimated that there are more than 5.25 trillion plastic pieces floating in the ocean, weighing more than 250,000 tons, based on water samples and visual surveys conducted on 24 expeditions in five subtropical gyres. But even at the time of publication in 2014, Moore said he knew "that was an underestimate."

A more recent study published this year, led by researchers at Plymouth Marine Laboratory, indicates that there's a lot more microplastic in the ocean than we previously thought. When taking samples from the ocean, most researchers use nets with a mesh size of 333 microns, which is small enough to catch microplastics, but big enough to avoid clogging. But the team from Plymouth Marine Laboratory used much finer 100-micron nets to sample the surface waters in the Gulf of Mexico and the English Channel.

"Our nets clogged too, so we used shorter trawls and a specialized technique for removing all the plankton — microscopic plants and biota — from the sample to reveal the microplastics," Matthew Cole, a marine ecologist at Plymouth Marine Laboratory and author of the study, told Mongabay in an email. "This process is quite time-consuming, so it'd be challenging for all samples collected to be treated this way."

The research team at Plymouth Marine Laboratory collecting water samples. Matthew Cole

The researchers found there were 2.5 to 10 times more microplastics in their samples compared to samples that used 333-micron nets.

"If this relationship held true throughout the global ocean, we can multiply existing global microplastic concentrations ascertained using 333-micron nets, to predict that globally there are 125 trillion plastics floating in the ocean," Cole said. "However, we know these plastics keep on degrading, and these smaller plastics would be missed by our smaller 100 micron net — so the true number will be far greater."

Another team of researchers delved down to the seafloor in the Tyrrhenian Sea in the Mediterranean to take sediment samples. They found that microplastic accumulated at depths of 600 to 900 meters (about 2,000 to 3,000 feet), and that certain spots in the ocean, termed "microplastic hotspots," could hold up to 1.9 million pieces per square meter — the highest level ever to be recorded on the seafloor. The results of this study were published in Science in June 2020.

"We were shocked by the sheer number of [microplastics]," Ian Kane, the study's lead author, told Mongabay in May. "1.9 million is enormous. Previous studies have documented much smaller numbers, and … just talked about plastic fragments, but it's fibers that are really the more insidious of the microplastics. These are the things that are more readily consumed and absorbed into organisms' flesh."

A water sample containing plastic. Algalita Marine Research and Education

While these studies shine light on the fact that there's definitely more plastic in the ocean than we think, it still doesn't complete the picture, says Steve Allen, a microplastic expert and doctoral candidate at the University of Strathclyde in the U.K. Large quantities of microplastics still appear to be "missing" from the ocean, he said. For instance, one study suggested that 99.8% of oceanic plastic sinks below the ocean surface layer, making it difficult to detect, but Allen says this doesn't fully explain what's happening to all of the plastic that enters the ocean.

"We're finding some of it," Allen told Mongabay. "But we're … trying to explain where the rest of it went."

Allen and his wife, fellow scientist Deonie Allen, also from the University of Strathclyde, have been working to find their answer, or at least part of it, in an unlikely place: up in the sky.

‘Microplastics Are in Our Air’

As the ocean churns and breaks waves, air is trapped in tiny bubbles. When those bubbles break at the sea's surface, water rushes to fill the void, and this causes tiny, micro-sized particles, like flecks of sea salt or bacteria, to burst into the atmosphere. A new study, published in PLOS ONE, suggests that microplastics are entering the air in the same way.

"[Bubbles] act a little bit like velcro," Deonie Allen told Mongabay. "Rather than the bubble going through the plastic soup and coming to the surface and not bringing any of the plastics with it, it actually collects [the plastic] and hangs on to it as it comes up. And when it bursts, the energy from the creation of the jet to fill the hole that's left in the sea … is what gives it the force to eject the plastic up into the atmosphere."

A lot of previous research on plastic pollution in the ocean has assumed that plastic remains in the seawater and sediment, or gets washed ashore. But this study takes a pioneering step to suggest that ocean plastic is entering the atmosphere through the sea breeze.

"This was just the next logical step to see whether what we're putting into the ocean was actually going to stay there, or whether it would come back," Steve Allen said.

A device used to collect air and mist samples to test for microplastics. Steve Allen

To obtain the necessary data for this study, the research team collected air and sea spray samples on the French Atlantic coast, both onshore and offshore. They found that there was a high potential for ocean microplastics to be released into the air, and suggested that each year, 136,000 tons of microplastics were blowing ashore across the world, although Steve Allen said this number was "extremely conservative."

This study specifically looked at microplastics, but the much smaller nanoplastics are likely going into air by the same means, according to the Allens. But detecting nanoplastics in the water or air can be challenging.

While this is the first study to look at the ocean as a source of atmospheric plastics, other research has examined the capacity of land-based plastics to leach into the air. One study, authored by the Allens and other researchers, found that microplastics were present in the air in the Pyrenees Mountains between France and Spain, even though the testing site was at least 90 kilometers (56 miles) from any land-based source of plastic, such as a landfill. This suggests that the wind can carry microplastics over long distances.

"We know that microplastics are in our air everywhere, from the looks of it," Deonie Allen said.

More research needs to be done to understand the implications of atmospheric microplastics on human health, but according to the Allens, it can't be good for us.

A "cloud catcher" used to collect data for research on microplastics in the atmosphere. Steve Allen

"Microplastics are really good at picking up the contaminants in the surrounding environment — phthalates, flame retardants, heavy metals," Deonie Allen said. "That will get released into the body, relatively effectively."

Enrique Ortiz, a Washington, D.C.-based ecologist and journalist who writes on the plastic pollution issue, says that this evidence should be a "wake up" call to humanity.

"The oceans are picking up the plastic that we throw in it, and that's what we're breathing," Ortiz told Mongabay "And that's the part that really … amazes me."

"But it's not just happening in coastal cities," he added. "No matter where you go, [even] in the middle of the Arctic … the human imprint is already there."

We're not just inhaling microplastics through the air we breathe — we're also getting it through the water we drink and the food we eat.

‘Our Life Is Plasticized’

Plastic waste isn't just leaking into the ocean; it's also polluting freshwater systems and even raining or snowing down from the sky after getting absorbed into the atmosphere, according to another study led by Steve and Deonie Allen. With microplastics being so ubiquitous, it should come as no surprise that they are also present in the food and water we drink.

Drinking water, including tap and bottled water, is the largest source of plastic in our diet, with the average person consuming about 1,769 tiny microplastic particles each week, according to a 2019 report supported by WWF. Other primary sources of microplastics include shellfish, beer and salt.

A new study published this year in Environmental Research found that microplastics were even present in common fruits and vegetables. Apples had one of the highest microplastic counts, with an average of 195,500 plastic particles per gram, while broccoli and carrots averaged more than 100,000 particles per gram.

"The possibility of plastics in our fruit and vegetables is extremely alarming," John Hocevar, ocean campaign director for Greenpeace USA, said in a statement. "This should prompt additional studies to assess how much plastic we are consuming through our produce each day and examine how it is impacting our health."

"Decades of plastic use have contaminated our air, water, and soil," Hocevar added. "Eating just a bite of an apple could now mean eating hundreds of thousands of bits of plastic at the same time."

Through normal water and food consumption, it's estimated that the average person consumes about 5 grams of plastic each week, equivalent to the size of a credit card, according to the WWF report.

"Plastic is everywhere," Thava Palanisami, a microplastics researcher at the University of Newcastle, Australia, and contributor to the WWF report, told Mongabay. "We live with plastic and our life is plasticized — that we know. But we don't know what it does to human health. That's the biggest question mark."

While it's not entirely clear how plastic affects human health, research suggests that the inhalation of fibrous microplastics can lead to respiratory tract inflammation. And another study, referenced in the WWF report, shows that fish and other marine animals with high concentrations of microplastics in their respiratory and digestive tracts have much higher mortality rates. Another study, published in 2020, indicates that plastic accumulates in the muscle tissue of fish.

"If you look at what happens, for example, in fish — it [plastic] stays in their muscles," Ortiz said. "It's scary. If you look at the numbers, you're eating something in the order of one kilo of plastic every three years. I wonder, in our lifetime … if a percentage of our weight will be plastic that is still in our muscles."

"The problem is serious," Palanisami said. "We've got to stop using unwanted plastic and manage plastic waste properly, and … work on new plastic alternates."

Stemming the Tide  

Erin Simon, head of plastic waste and business at WWF, and leader of the organization's packaging and material science program, says the key to curbing the plastic pollution issue is making sure that plastic doesn't leak into nature in the first place.

"If you had a leaky faucet, would you bring out the mop first, or would you turn off the water?" Simon told Mongabay. "We're trying to stem that tide of plastic flowing into the ocean and into nature in general … but at the same time, trying to identify the different root causes of that leakage."

While Simon says there are various ways to try and stop plastic from entering the natural world, such as well-managed recycling and composting programs, she also said that large companies can play a critical role in helping to reduce plastic waste. WWF is currently spearheading a new program called ReSource, launched in 2019, that helps analyze companies' plastic footprints in order to work toward sustainable solutions. The program's website says 100 companies could prevent 50 million tons of plastic waste.

"We have three targets that we're looking at when we're partnering with companies," Simon said. "One, get rid of what you don't need. At the end of the day, we do need to reduce our demand for virgin nonrenewable plastic. Once you get rid of that, you think about the stuff that you do need — the things [for which] plastic is the right material choice. Where am I sourcing that from? Am I getting it from recycled content? Am I getting it from a sustainably-sourced bio base, or is it virgin non-renewable [plastic]? And then finally … how are you, as a company … making sure it comes back? Are you designing it in a way that it's technically recyclable into the places that it's ending up?"

Marine debris litters a beach on Laysan Island in the Hawaiian Islands National Wildlife Refuge, where it washed ashore. Susan White / USFWS

While recycled plastic may seem like a satisfactory alternative to virgin plastic, a new study, published in July 2020, showed that children's toys made out of recycled plastic contained high levels of toxic chemicals, comparable to levels found in hazardous waste.

Moore, who has been studying plastic pollution since his discovery of the floating debris in the North Pacific Ocean, says he doesn't believe there's an easy fix to this issue, especially when it comes to the businesses that are producing large amounts of plastic.

"There's no change that corporations can make under the current system that will successfully combat plastic pollution," Moore said. "There is no technical fix to the plastic problem. It's not in the corporate portfolio to reduce sales of your products — the corporate portfolio is about increasing sales. The idea that [corporations] can be convinced to reduce their production and sale of the products that they make is a fantasy."

However, Moore says a solution could be found in "radical change," and that this moment of time, with the Black Lives Matter movement spreading across the world, could provide the opportunity for that change.

"Now is the time when a world historical revolution would be possible, when the people of the world could unite to change the system as a whole," Moore said.

"There won't be a techno fix and science won't develop … a new product that will get us out of the problem of plastic pollution," he said. "It will only come with the world as a whole agreeing to charter a new course towards a non-polluting future."

Reposted with permission from Mongabay.

Scientists say that a record-breaking Arctic heat wave was made 600 times more likely by the man-made climate crisis. PBS NewsHour / YouTube

The record-breaking heat in the Arctic saw temperatures soar above 100 degrees for the first time in recorded history. Now, a new analysis has put to rest any notion that the heat was caused by natural temperature fluctuations.

Read More Show Less

Trending

Commuters arrive at Grand Central Station with Metro-North during morning rush hour on June 8, 2020 in New York City. Angela Weiss / AFP / Getty Images

By Taison Bell

"Hospital Capacity Crosses Tipping Point in U.S. Coronavirus Hot Spots" – Wall Street Journal

This is a headline I hoped to not see again after the number of coronavirus infections had finally started to decline in the Northeast and Pacific Northwest. However, the pandemic has now shifted to the South and the West – with Arizona, Florida, California and Texas as hot spots.

Read More Show Less